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Vote for Songs!

In a few weeks we are
going to use those
votes to motivate an
Important concept in
probability theory.

You can vote once a
day !

https://psetapp.stanford.edu/win26/music/
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independent trials, where each trial
1S a success with probability p:

The number of successes, 1n #
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Binomial Random Variable



Poisson Random Variable
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Probability of k requests from this area in the next 1 min
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Poisson Random Variable

Poisson Random Variable

Notation: X ~ Poi(A)
Description: Number of events in a fixed time frame if (a) the events occur with a

constant mean rate and (b) they occur independently of time since last event.

Parameters: A € {0,1,...}, the constant average rate.
Support: z €{0,1,...}
PMF equation: oy _ ) _ Aze;*
z!
Expectation: E[X]=X
Variance: Var(X) = A
PMF graph:

Parameter A: 5

0.18
0.16
0.14
0.12

0.10
0.08
0.06
0.04
0.02

10 11 12 13 14 15 16 17 18

Probability

Values that X can take on




Discrete Random Variables

X ~ Bern(p) X ~ Geo(p)
Successes in one trial Trials until one success
Y ~ Bm(n, p) Y ~ NegBin(r, p)

Successes in n trials Trials until r success

X ~ Poi(A)

Events in one time
Interval




Expected Value

The probability of
The value that value

) %
EX]=)» z-P(X =ux)

[

Loop over all values x that X can take on




How Should We Measure Spread? - Variance

Let X be a random variable

On average..

distance
Spread stat.

1= E[X]=575 — P fﬁ
Var(X) = E[(X — E[X))?
N

The mean

The random
variable X of X

Var(X) = E[X?] - (E[X])?

60 80 100




Properties of Variance

Variance of a Sum is a sum of Variances

Var(X) = Va,r( i Xt-)

Only if X:s are
independent!

= va(xi)

Linearity of Variance

Var(aX + b) = a*Var(X)




End Review



Learning Goals

1. Integrate a density function (PDF) to get a probability
2. Use a cumulative distribution function (CDF) to get a probability




Big hole in our knowledge
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Can’t Talk About Continuous Values

Say the average rate of earthquakes is 1 every 100 years.

We can talk about the probability distribution of different numbers of
earthquakes next year.

We can’t talk about the probability distribution of the amount of time until the
next earthquake.




random () ?




The random( ) Function

- Outputs values between 0 and 1

- All possible values are equally likely

- This is a continuous random variable!

100 Samples

5 p

4 200 A1
>
S 31 J 150

e

o O
=) S
o o
Q2 @ 100
- =

1 50 1

0 - 0 -

0.00 0.25 0.50 0.75 1.00 0.00

Output of random()

10000 Samples

0.25 0.50 0.75
Output of random()

import random

samples_small = []
for i in range(100):
samples_small.append(random. random())

samples_medium = []
for i in range(10000):
samples_medium.append(random.random())

samples_large = []
for 1 in range(1000000):
samples_large.append(random. random() )

1000000 Samples

20000 A
17500 -
15000 -

y

v ]
2 12500

e

3 10000 A

7500

Freq

5000 -

2500 1

1.00 0.00 0.25 0.50 0.75

Output of random()

1.00



X ~ Uniform(0,1): A Continuous Random Variable




X ~ Uniform(0,1): A Continuous Random Variable

All values are
equally likely

How likely?

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are PO<X<1)=?
equally likely

How likely?

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are PO<X<1 =1
equally likely

Probability of the whole
sample space must equal 1

(Axiom 2)

How likely?

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are POL<X<1)=1
equally likely

How likely?

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are PO<X<1 =1
equally likely

. .
How likely: Half of all possible outcomes

are between 0.5 and 1

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are POL<X<1)=1
equally likely
PO5<X<1)= 05
How likely? P05<X <06)= 72
X
0 1

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

How likely?

All values are
equally likely

Possible values are
between O and 1

1/10 of all possible outcomes
are between 0.5 and 0.6

So far, the pattern looks like:

P(start < X < end) = end - start




X ~ Uniform(0,1): A Continuous Random Variable

All values are POL<X<1)=1
equally likely

P05<X <1)= 05
How likely? P(05< X <0.6)= 0.1

P(0.5 < X < 0.5001) = 0.0001

As we get more precise,

probabilities keep shrinking...
Possible values are

between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are POL<X<1)=1
equally likely
P05<X<1)= 05

P(05< X <0.6)= 0.1

How likely?

P(0.5 < X < 0.5001) = 0.0001

X P(X =05) = 2

Possible values are
between O and 1




X ~ Uniform(0,1): A Continuous Random Variable

All values are POL<X<1)=1
equally likely
P05<X<1)= 05

How likely? P(05< X <0.6)= 0.1

P(0.5 < X < 0.5001) = 0.0001

X P(X=05)=0
0 1
Possible values are The probability of any exact outcome,
between O and 1 with infinite precision...is zero ==

NNV
g G~ %
A 3
AT~ =

XN *
R =y




X ~ Uniform(0,1): A Continuous Random Variable

The probability of any continuous random variable
being exactly equal to any value is 0.

P(X =x) =0, for all =




X ~ Uniform(0,1): A Continuous Random Variable

The probability of any continuous random variable
being exactly equal to any value is 0.

P(X =x) =0, for all =

No PMFs!




X ~ Uniform(0,1): A Continuous Random Variable

PO<X<1) =1
P05<X <1)= 05
P(0.5< X <0.6) = 0.1

P(0.5 < X < 0.5001) = 0.0001

The only way to talk about probabilities of
outcomes for continuous random variables is
using ranges of possible values.




Curse of Dimensionality

A random point of dimension d is a list of d random values: [X;...X}]
X;~Uni(0, 1) forall ;

T| Each value X; 1s independent of other values
‘ ,1| ) X; 1s close to an edge 1f X; 1s less than
T~ a 0.01 or X is greater than 0.99. What is the
. I| probability that X is close to an edge?
| .
| I
\ / .
\\ YA
\




Curse of Dimensionality

A random point of dimension d is a list of d random values: [X;...X}]
X;~Uni(0, 1) forall ;

T| ~ Each value X; 1s independent of other values
‘ _1 ) X; 1s close to an edge if X; is less than
T a 0.01 or X, is greater than 0.99. What is the
. I probability that X is close to an edge?
\\ | .
\ T~ Dimension n
\\ S 0.0 1.0
\ (= —)
0.99

0.01




Curse of Dimensionality

A random point of dimension d is a list of d random values: [X;...X}]
X;~Uni(0, 1) forall ;

T| Each value X; 1s independent of other values
< ) 1| . ."I A random point [X;...X;y] of dimension 100 is
T / close to an edge if any of its values are close to
. T| an edge. What is the probability that a 100
| | . dimensional point is close to an edge?
| M~
\ / .
\\ YA




X ~ Uniform(a, ): More General Case

All values are PH<X<T7)=1
equally likely

How likely?

a=5 B=7
Possible values are
now between O and [3




X ~ Uniform(a, ): More General Case

All values are Ph<X<T)=1
equally likely

How likely?

a=5 B=7
Possible values are
now between O and [3




X ~ Uniform(a, ): More General Case

All values are Ph<X<T)=1
equally likely

How likely?

a=5 B=7
Possible values are
now between O and [3




X ~ Uniform(a, ): More General Case

All values are Ph<X<T7)=
equally likely

How likely?

a=5 B=7
Possible values are
now between O and [3




X ~ Uniform(a, ): More General Case

All values are PG<X<T) =
equally likely
P6<X<7) =05
How likely? P(6 <X <6.1) =0.05
X
O(=5 B:7

Possible values are
now between O and [3




X ~ Uniform(a, ): More General Case

P6<X<T)=05
P(6< X <6.1) =0.05

All values are P(5
equally likely

<X<7)=1

How likely?

For Uniform(0,1):

P(start < X < end) = end - start

start end

a=5 B=7
Possible values are Does that still work?

now between & and [3




X ~ Uniform(a, ): More General Case

All values are P(5
equally likely

<X<7)=1

P6<X<T)=05
P(6< X <6.1) =0.05

How likely?

For Uniform(0,1):

P(start < X < end) = end - start

start end

o=5 B=7 Does that still work? No!

Possible values are Need to divide by 2?
now between O and [3




X ~ Uniform(a, ): More General Case

All values are P(5
equally likely

<X<7)=1

P6<X<T)=05
P(6< X <6.1) =0.05

How likely?
1/2 - For Uniform(a, B):
end - start
P(start <X <end) =
X B -«

start end

a=5 B=7
Possible values are
now between O and [3




Uniform Random Variable

A Uniform random variable X takes on a value, with equal likelihood between
a and p.

Lo — &

08—«

X ~ Uni(e, B) Plz1 < X < x2) =

Support: [a, p]

Parameter a: 0 Parameter 8: 2

0.50
0.45

Examples: 2 03
* Result of python random() .=
* Random points 2 ots

0.10
0.05

0
-1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

Values that X can take on

Stanford University 4s




Can we generalize to other continuous
random variables?







Riding the Margueritte

s

You’re running to the bus stop. You don’t know
exactly when the bus arrives.

You have a probability distribution for bus arrival
times -- some times are more likely than others.

You show up at 2:15pm. What is P(wait < 5 min)?




Riding the Margueritte

e ————mmmEme—

You’re running to the bus stop. You don’t know
exactly when the bus arrives.

You have a probability distribution for bus arrival
times -- some times are more likely than others.

You show up at 2:15pm. What is P(wait < 5 min)?

wait <5 min If time was discrete: a PMF could look like this.
/I‘I: : :
= o
% i
2:00pm 10 20 30

Bus arrives T mins after 2:00pm




Riding the Margueritte

e ————mmmEme—

You’re running to the bus stop. You don’t know
exactly when the bus arrives.

You have a probability distribution for bus arrival
times -- some times are more likely than others.

You show up at 2:15pm. What is P(wait < 5 min)?

wait <5 min If time was discrete: a PMF could look like this.
/I‘I: : :
= L
m .
2:00pm 10 20 30

Bus arrives T mins after 2:00pm




To the course reader!



What Happens as Bin Width Goesto 0 ?

Discretization Bin Width (s): |50

007 _— Discretization Bin Width (s): Discretization Bin Width (s):

0.007 0.007
0.06
0.006 0.006
0.05
0.005 2 0.005
&
£ 004 > 5
2 £ 0.004 2 0.004
5 = 2
S 0.03 s =
0.02 = 2
' 0.002 & 0002
0.01 l 0001 0.001
0 - II III'I e—— 0
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-1500 -1000 -500 0 500 1000 1500 2000 2500 S O H O P D P D D L L O L ®
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Arrival Time (s) . ] T
Arrival Time (S) Arrival Time (S)

As the bin width goes to 0.....




What Happens as Bin Width Goesto 0 ?

Discretization Bin Width (s): |50

007 _— Discretization Bin Width (s): Discretization Bin Width (s):

0.007 0.007
0.06
0.006 0.006
0.05
0.005 2 0.005
%
£ 004 > 5
2 £ 0.004 2 0.004
5 = 2
S 0.03 s 5
0.02 = 2
' 0.002 g 0002
0.01 l e 0.001
0 - II III'I e—— 0
0 —
-1500 -1000 -500 0 500 1000 1500 2000 2500 S O D O D D P RV DV DV P QDL RO
7 1500 <1000 -500 0 500 1000 1500 2000 2500 FTFITFITFTFTIFTFTSTEIFTEFFT IS ESTFFTF
Arrival Time (s) . ] T
Arrival Time (S) Arrival Time (S)

As the bin width goes to 0.....

This limit is where calculus is born!!



What Happens as Bin Width Goesto 0 ?

Discretization Bin Width (5): 50 ]
0.07 Discretization Bin Width (s):

0.007
0.06
0.006
0.05
0.005
£ 00 =
B £ 0.004
£ 003 g
& € 0.003
£
0.02
0.002
0.01 '
0.001
0 ﬁ--II'II III'II"I-I----.-_-_ﬁﬁ__.. =t
-1500 -1000 -500 0 500 1000 1500 2000 2500 0 T
-1500 -1000 -500 0 500 1000 1500 2000 2500

Arrival Time (s) Arrival Time (s)

As the bin width goes to 0.....

This limit is where calculus is born!!

Summing probabilities over
many tiny intervals becomes

Discretization Bin Width (s):

0.007
0.006
0.005
0.004

0.003

Probability Density

0.002

0.001

NN
,‘;\

0
* &

O 0 0 ®
s RN

7
070
&
v
2

Arrival Time (s)

A PMF turns into a PDF, which is a
derivative of a probability.

an integral.
: / \ Finite differences
Reimann sums

become a derivative



Riding the Margueritte

—mTTEE :

wait <5 min
—

You’re running to the bus stop. You don’t know
exactly when the bus arrives.

You have a probability distribution for bus arrival
times -- some times are more likely than others.

You show up at 2:15pm. What is P(wait < 5 min)?

When interval sizes tend towards O:

1 Time is now a continuous variable

: P(15 < T < 20) 1 The probability mass function (PMF)

becomes a derivative called a
probability density function (PDF)

10 20

Bus arrives T mins after 2:00pm

1 Probability are now calculated as
area under the curve

30




Time For Integrals!!!!

@ d©

Piech & Cain, CS109, Stanford University



Probability Density Function

The probability density function (PDF) of a
continuous random variable represents the
relative likelihood of various values.

Units of probability divided by units of X.
Integrate it to get probabilities!




Probability Density Function

The probability density function (PDF) of a
continuous random variable represents the
relative likelihood of various values.

Units of probability divided by units of X.
Integrate it to get probabilities!

b

Pla < X <b) = /[ X(Q?)]d:l?
r=a N

This is another way to write the PDF




Probability Density Function

The probability density function (PDF) of a
continuous random variable represents the
relative likelihood of various values.

Units of probability divided by units of X.
Integrate it to get probabilities!

Pla< X <b) = /-dﬂ:

This is another way to write the PDF




Probability Density Function

The probability density function (PDF) of a
continuous random variable represents the
relative likelihood of various values.

Units of probability divided by units of X.
Integrate it to get probabilities!




PDFs like AAX = x) vs. PMFs like P(X = x)

“The probability that a discrete random variable X takes on
P(X — ZIZ‘) the value x.”
f (X — .CE) “The derivative of the probability that a continuous random

variable X takes at the value x.”

They are both measures of how likely X is to take on the value x.
Sometimes called the distribution function.




What do you get if you
Integrate over a
probability density function?

A probability!



The Relative Values of PDFs Are Meaningtul

Probability density functions are derivatives that articulate relative belief.

Let X be the # of minutes after 2pm that the bus arrives at a stop.

= 8 =
I | |
= < =
S~ = S
0 X 60 0 X 60 0 X 60

Which of these represent that the bus’s arrival
is more likely to be close to 3:00pm?




The Relative Values of PDFs Are Meaningtul

Probability density functions are derivatives that articulate relative belief.

Let X be the # of minutes after 2pm that the bus arrives at a stop.

S )
I |
S )
— S—
0] X 60 0 X 60

Which of these represent that the bus’s arrival
is more likely to be close to 3:00pm?

O 0,

& ,‘«V" .11{1\-.

Y S\ Y\
PO\
8 e B

2\

%
=
A

Piech & Cain, CS109, Stanford Un iw'




The relative value of
probability densities is
meaningful




Truths of Probability For Continuous Random Variables

b
Truth 1: P(a < X < b) — / f(_X — ;1:) dx Area under the curve!

r=a




Truths of Probability For Continuous Random Variables

b

Area under the curve!

Since the integral is a
probability (Axiom 1)

PDF

Truth 1: Pla< X <b) = / f(X =xz)dzx
, —
Truth 2: 0 < /f(X::U) de <1
r=—a
& 2
Can a PDF ever have a value > 1? |
Yes! o)
S
a=>_0




Truths of Probability For Continuous Random Variables

Truth 1:

Truth 2:

Truth 3:

b
P(a<X<b)=/f(X=:r:)d:B

7 F(X =x) de =1

r=——00

Area under the curve!

Since the integral is a
probability (Axiom 1)

That’s all possible values
(Axiom 2)




Truths of Probability For Continuous Random Variables

b

Truth 1: P(a < X < b) — / f(X = ;1';) dx Area under the curve!
r=a
b
. - Since the integral is a
Truth 2: 0= / f(X =) dr <1 probability (Axiom 1)
r=a
¢
That’s all possible values
Truth 3: / f(X = CE’) dr =1 (Axiom 2)
r=—00

What a time to be alive...

Truth 4: P(X=z)=0




. . 2
Solve for K f(X=z)=K- -z 0<z<1
b
Truth 1: P(a, < X < b) — / f(X — 3_‘:) dx Area under the curve!
. r=a
. - Since the integral is a
Truth 2: 0= / f(X =) dr <1 probability (Axiom 1)
r That’s all possible values
Truth 3: / f(X — x) CZCC =1 (Axiom 2)
Truth 4- P(X _ 33) — 0 What a time to be alive...




PDFs Need an Integral

— B \\Vhat is the probability that the
bus arrives at: 12.12332343234...

mins after 2pm?

wait <5 min

I_H
. P(15<T<20)

10 20 30

Bus arrives T mins after 2:00pm




What do you get if you
Integrate over a
probability density function?

A probability!



Pedagogic Pause



You are ready for the classic
continuous random variables
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How long until the next “big one”?



Exponential Random Variable

ﬁor any Poisson Process, the Exponential RV models time until an eve%

X~Exp(A)

le ™ ifx=>0
PDF: xX) = =
/() {O otherwise

Piech & Cain, CS109, Stanford University



Exponential Random Variable

ﬁor any Poisson Process, the Exponential RV models time until an eve%

o

X~Exp(A)

0 otherwise

Examples:
* Time until next earthquake

* Time until a ping reaches a web server

* Time until next Uber request

Piech & Cain, CS109, Stanford University



Exponential Random Variable

ﬁor any Poisson Process, the Exponential RV models time until an eve%

/

X~Exp(A)
_/‘Lx .
k 0 otherwise
1 _
Examples: oo . like "exponential decay”
* Time until next earthquake fx=x %" P Y
* Time until a ping reaches a web server 0.2 -

 Time until a Uranium atom decays

X

1 2 3 4 5
Piech & Cain, CS109, Stanford University



The process for an
Exponential and a
Poisson are the same. So
Is the parameter A. The
qguestion is different
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How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+)
happen at a rate of 0.002 per year*. What is the probability of
a major earthquake in the next 30 years?

Y = Years until the next earthquake of magnitude 8.0+

Y ~ Exp(A = 0.002) fr(y) = Ae™ ™V

— —0.002y
- 0.002¢

P(Y < 30) = / 0.002¢ =992V gy
0

*In California, according to the USGS, 2015




Integral Review

Piech, CS109, Stanford University




How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+)
happen at a rate of 0.002 per year*. What is the probability of
a major earthquake in the next 30 years?

Y = Years until the next earthquake of magnitude 8.0+
Y ~ Exp(\ = 0.002) fy(y) = Xe ™

30
—0.002
P(Y < 30) = / 0.002¢~°-992¥ gy = 0.002 Y
0

30

= 0.002 [— ! 6—0-002?!]

0.002 .

_ [_e—o.oozy]go

_ _—0.002:30 4 0

~ (0.058

*In California, according to the USGS, 2015




How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+)
happen at a rate of 0.002 per year*. What is the expected
number of years until the next earthquake?

Y = Years until the next earthquake of magnitude 8.0+

Y ~ Exp(\ = 0.002)

*In California, according to the USGS, 2015




How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+)
happen at a rate of 0.002 per year™. What 1s the standard
deviation of years until the next earthquake?

Y = Years until the next earthquake of magnitude 8.0+

Y ~ Exp(A = 0.002)

Var(Y) = 1

2= 00022 250,000 years”

Std(Y) = v/ Var(X) = 500 years

*In California, according to the USGS, 2015




How Many Earthquakes

Based on historical data, major earthquakes (magnitude 8.0+)
happen at a rate of 0.002 per year*. What is the probability of
zero major earthquakes magnitude next year?

X = Number of major earthquakes next year

X ~ Poi(A = 0.002)

A% 0.0020¢70002

P(X=0)= "7 ; ~ 0.998

*In California, according to the USGS, 2015




Is there a way to avoid integrals?



Cumulative Distribution Function

A cumulative distribution function (CDF) is a “closed form” equation for the probability
that a random variable is less than a given value

F(x)=P(X < x)

If you learn how to use a

cumulative distribution

function, you can avoid
integrals!

E , ! This is also shorthand notation
x :I; for the CDF




Cumulative Distribution Function

F(:I:):P(X<a:).-l

Piech, CS109, Stanford University




CDF of an Exponential
FX(f) = 1 — 6_)\51j

Piech, CS109, Stanford University




Using CDF Example. X is Exp(A = 1)

P b b'l 't x:-0.227607977 y:1.25559301
robability
density
function f(CE) — \e M@
455 5
Cumulative + x.0.070795010  y:-0.073361175
distribution g
function B
15 F(aj):l_e AT
X
05 1 15 2 25 3 35 4 45 5

I I1ICUll), wwaivy, JLalliivi v UIII‘VCIJILY




Using CDF Example. X is Exp(A = 1)

P b b'l 't x:-0.227607977 y:1.25559301 P(X < 2)
robability
density
function f(CE) — \e M@
455 5
Cumulative + x.0.070795010  y:-0.073361175
distribution g
function B
15 F(aj):l_e AT
X
05 1 15 2 25 3 35 4 45 5

I I1ICUll), wwaivy, JLalliivi v UIII‘VCIJILY




Using CDF Example. X is Exp(A = 1)

Probability x:-0.227607977 y:1.25559301 P(X < 2)

density

function f(CU) — \e M@

2
= / f(x) dz
T=—00

Cumulative %» x-0.070795010 y:-0.073361175

distribution

function

Flz)=1—e

X

05 1 15 225 3 35 4 45 5
I I1ICUll), wwaivy, JLalliivi v UIIIVCIJILY




Using CDF Example. X is Exp(A = 1)

x:-0.227607977 y:1.25559301

Probability P(X <2)
density
function f(CE) — \e M@
2
[ @) s
r=—00
Cumulative + x.0.070795010  y:-0.073361175 or
distribution g
function
_ —\x
15 F(ZB) = 1 — € — F(2)
— 1 — 6_2
X ~ 0.84
0.5 ! 1.5 25 3 35 4 45 5

I I1ICUll), wwaivy, JLalliivi v UIII‘VCIJ'ILY



Using CDF Example. X is Exp(A = 1)

P b b'l 't x:-0.227607977 y:1.25559301 P(X > 1)
robability
density
function f(CE) — \e M@
455 5
Cumulative + x.0.070795010  y:-0.073361175
distribution g
function B
15 F(aj):l_e AT
X
05 1 15 2 25 3 35 4 45 5

I I1ICUll), wwaivy, JLalliivi v UIII‘VCIJILY




Using CDF Example. X is Exp(A = 1)

Probability
density
function

Cumulative
distribution
function

x:-0.227607977 y:1.25559301
P(X >1)

f(z) = Xe

% x:-0.070795010 y:-0.073361175
)

Flz)=1—e

X

05 1 15 225 3 35 4 45 5

I‘IC\.‘II’ \aJlJ.UJ, JLClIIIIUI u UIII‘VCIJILY




Using CDF Example. X is Exp(A = 1)

Probability
density
function

Cumulative
distribution
function

05

x:-0.227607977 y:1.25559301 P(X > 1)
f(z) = Xe o
= / f(z) dx
r=1
:-0.070795010 ' y:-0.073361175 or
Fz)=1—e =1-F)
— 6_1
~ 0.37

X

225 3 35 4 45 5

Ii’ \/JiUJ,‘JLQ'I"U' u UIII‘VCIJ'ILY




Using CDF Example. X is Exp(A = 1)

Probability x:-0.227607977 y:1.25559301 P(l < X < 2)
density
function f(CE) — \e M@
455 5
Cumulative + x.0.070795010  y:-0.073361175
distribution g
function B
15 F(aj):l_e AT
X
05 1 15 2 25 3 35 4 45 5

I I1ICUll), wwaivy, JLalliivi v UIII‘VCIJILY




Using CDF Example. X is Exp(A = 1)

Probability
density
function

Cumulative
distribution
function

Fx(z) = P(X < x)

X

~ [ fway

y=—00

x:-0.227607977 y: 1.25559301 P(l < X< 2)

f(z) = Xe

% x:-0.070795010 y:-0.073361175
)

Flz)=1—e

X

05 1 15 225 3 35 4 45 5
I I1ICUll), wwaivy, JLalliivi v UIIIVCIJILY




Using CDF Example. X is Exp(A = 1)

x:-0.227607977 y: 1.25559301 P(l < X< 2)

Probability
density
function ,
— [ f@) de
r=1
or
Cumulative » x0.070795010  y:-0.073361175
distribution =
functi _ — F(2)— F(1
unction ) F(;[j) 1. \ ( ) ( )
FX(l'):P(X<£U> , :<1—€_2)
X
L 1
= / fy) dy (1—e7)
T 15 25 3 X35 4 45 5 ~ 023

I 1CUll, “OdUJT, JLalliviu Uiliveidity




Probability of Earthquake in Next 4 Years?

Based on historical data, earthquakes of magnitude 8.0+ happen
at a rate of 0.002 per year*. What is the probability of
a major earthquake in the next 4 years?

Y = Years until the next earthquake of magnitude 8.0+

Y ~ Exp(A = 0.002) F(y) = 1 — e 00029

Feeling lucky?

*According to USGS, 2015




Two Classic Random Variables

Uniform Random Variable Exponential Random Variable
Notation: X ~ Uni(e, B) Notation: X ~ Exp()\)
Description: A continuous random variable that takes on values, with equal likelihood, L. . . . .
between  and 8 Description: Time until next events if (a) the events occur with a constant mean rate and
Parameters: a € R, the minimum value of the variable. (b) they occur independently of time since last event.
ﬁ €R, 8> a, the maximum value of the variable. Parameters: A € {0,1,...}, the constant average rate.
Support: € [a .3] Support: zeR"
PDF equation: fla) = 1 forz € [a, ] PDF equation: flz) = e e
e else CDF equation: Flz)=1—e™
CDF equation: o forz € [a, 4] .
Fz)= 10 forz < Expectation: EX]=1/X
1 forz > 8 Variance: Var(X) = 1/X?
Expectation: = %(a PDF graph:
Variance: Va.r =1 o
( )= ('6 Y Parameter A: 5
PDF graph:
Parameter a: 0 Parameter 5: 1 50
Lo 4.5
0.9 4.0
0.8 3.5
207 230
g 0.6 2 2.5
o
£ 05 £ 20
::g 0.4 1.5
£ 03 1.0
0.2
0.5
0.1
0 0
10 05 0 0.5 10 15 20 0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8
Values that X can take on Values that X can take on

Flecn, L5109, Stanford University




Funnest Fact: Exponential is Memoryless!

X ~ Exp(})

P(X >s+t|X>s)=P(X>t) Whatifstime has passed?

P PCD
a=lo 15 :]' b=5 T
PC(T>a+b) P(T>b)
P(T>a) 1




Funnest Fact: Exponential is Memoryless!

X ~ Exp(}A)
P(X>s+t[X>s)=P(X >t) Whatifstime has passed?

Which 1s something we can prove:

P(X >s+tand X > s)

Def of conditional prob.

P(X > s+tX>s)

P(X > s)
P(X > t
— (P(X j :) ) Because X > s + t implies X > s
— 1 — Fx(s +1) Def of CDF
1 — Fx(s)
e—)\(s+t)
= By CDF of Exp
e—As
—e M Simplify
=1-— Fx(t) By CDF of Exp
=P(X > 1) Def of CDF

Piech & Cain, CS109, Stanford U
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