
Continuous Variables
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Pset #3 is Out



3

Vote for Songs!

In a few weeks we are 
going to use those 
votes to motivate an 
important concept in 
probability theory. 

You can vote once a 

day !! 

https://psetapp.stanford.edu/win26/music/

https://psetapp.stanford.edu/win26/music/
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1906 Earthquake 
Magnitude 7.8
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1906 Earthquake 
Magnitude 7.8

How long until the next “big one”?
Piech & Cain, CS109, Stanford University



Four Prototypical Trajectories

Review
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Binomial Random Variable

The number of successes, in n 

independent trials, where each trial 

is a success with probability p:



Poisson Random Variable

Probability of k requests from this area in the next 1 min



Poisson Random Variable
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Discrete Random Variables

X ~ Bern(p) 

Y ~ Bin(n, p) 

X ~ Geo(p) 

Y ~ NegBin(r, p) 

Successes in one trial

Successes in n trials

Trials until one success

Trials until r success

X ~ Poi(λ) 

Events in one time 

interval



Expected Value

Loop over all values x that X can take on

The value
The probability of 

that value



-100 -80 -60 -40 -20 0 20 40 60 8060 80 10040200

How Should We Measure Spread? - Variance

On average..

The random 
variable X

The mean 
of X

distance
Spread stat.

μ = E[X] = 57.5 

Let X be a random variable



Variance of a Sum is a sum of Variances 

Properties of Variance

Only if Xis are 
independent!

Linearity of Variance



Four Prototypical Trajectories

End Review



1. Integrate a density function (PDF) to get a probability
2. Use a cumulative distribution function (CDF) to get a probability 

Learning Goals



Four Prototypical Trajectories

Big hole in our knowledge



Not all values are discrete



Can’t Talk About Continuous Values

Say the average rate of earthquakes is 1 every 100 years. 

We can talk about the probability distribution of different numbers of 
earthquakes next year. 

We can’t talk about the probability distribution of the amount of time until the 
next earthquake.
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Four Prototypical Trajectories

random()?



The random() Function

-  Outputs values between 0 and 1

-  All possible values are equally likely

-  This is a continuous random variable!



X ~ Uniform(0,1): A Continuous Random Variable



X ~ Uniform(0,1): A Continuous Random Variable

0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

?

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

Probability of the whole 
sample space must equal 1

(Axiom 2)

X ~ Uniform(0,1): A Continuous Random Variable



0 1
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How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

?

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

Half of all possible outcomes 
are between 0.5 and 1

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

?

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

1/10 of all possible outcomes 
are between 0.5 and 0.6

So far, the pattern looks like:

P(start ≤ X ≤ end) = end - start

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

As we get more precise, 
probabilities keep shrinking…

0.0001

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

0.0001

?

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

0.0001

0

The probability of any exact outcome, 
with infinite precision…is zero

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

0.0001

0

The probability of any exact outcome, 
with infinite precision…is zero

The probability of any continuous random variable 
being exactly equal to any value is 0.

X ~ Uniform(0,1): A Continuous Random Variable



0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

0.0001

0

The probability of any exact outcome, 
with infinite precision…is zero

The probability of any continuous random variable 
being exactly equal to any value is 0.

No PMFs!

X ~ Uniform(0,1): A Continuous Random Variable



0

The probability of any exact outcome, 
with infinite precision…is zero

0 1

x

How likely?

Possible values are 
between 0 and 1

All values are 
equally likely

1

0.5

0.1

0.0001

The only way to talk about probabilities of 
outcomes for continuous random variables is 

using ranges of possible values. 

X ~ Uniform(0,1): A Continuous Random Variable



Curse of Dimensionality

36

Xi is close to an edge if Xi is less than 

0.01 or Xi is greater than 0.99. What is the 

probability that Xi is close to an edge?

A random point of dimension d is a list of d random values:  [X1…Xd] 

Xi ~ Uni(0, 1) for all i

Each value Xi is independent of other values



Curse of Dimensionality

37

Xi is close to an edge if Xi is less than 

0.01 or Xi is greater than 0.99. What is the 

probability that Xi is close to an edge?

A random point of dimension d is a list of d random values:  [X1…Xd] 

Xi ~ Uni(0, 1) for all i

Each value Xi is independent of other values

0.0 1.0

0.990.01

Dimension n



Curse of Dimensionality

38

A random point [X1…X100] of dimension 100 is 

close to an edge if any of its values are close to 

an edge. What is the probability that a 100 

dimensional point is close to an edge?

A random point of dimension d is a list of d random values:  [X1…Xd] 

Xi ~ Uni(0, 1) for all i

Each value Xi is independent of other values



X ~ Uniform(⍺, β): More General Case

⍺=5 β=7

x

How likely?

Possible values are 

now between ⍺ and β

All values are 
equally likely



⍺=5 β=7

x

How likely?

Possible values are 

now between ⍺ and β

All values are 
equally likely

?

X ~ Uniform(⍺, β): More General Case
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⍺=5 β=7

x

How likely?

Possible values are 

now between ⍺ and β

All values are 
equally likely

X ~ Uniform(⍺, β): More General Case



⍺=5 β=7

x

How likely?

Possible values are 

now between ⍺ and β

All values are 
equally likely

Does that still work?

For Uniform(0,1):

P(start ≤ X ≤ end) = end - start

start end

X ~ Uniform(⍺, β): More General Case



⍺=5 β=7

x

How likely?

Possible values are 

now between ⍺ and β

All values are 
equally likely

For Uniform(0,1):

P(start ≤ X ≤ end) = end - start

Does that still work? No!

Need to divide by 2?

start end

X ~ Uniform(⍺, β): More General Case



⍺=5 β=7

x

How likely?

Possible values are 

now between ⍺ and β

All values are 
equally likely

For Uniform(⍺, β):1/2

P(start ≤ X ≤ end) = 
end - start

β - ⍺
start end

X ~ Uniform(⍺, β): More General Case
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A Uniform random variable 𝑋 takes on a value, with equal likelihood between 
⍺ and β.

 

Examples:
• Result of python random()

• Random points

Uniform Random Variable

48

Support: [⍺, β]
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Four Prototypical Trajectories

Can we generalize to other continuous 

random variables?



Riding the Marguerite



You’re running to the bus stop. You don’t know 
exactly when the bus arrives.

You have a probability distribution for bus arrival 
times -- some times are more likely than others. 

You show up at 2:15pm. What is P(wait < 5 min)?

Riding the Margueritte



You’re running to the bus stop. You don’t know 
exactly when the bus arrives.

You have a probability distribution for bus arrival 
times -- some times are more likely than others. 

You show up at 2:15pm. What is P(wait < 5 min)?

2:00pm 20 30

wait <5 min

Bus arrives T mins after 2:00pm

P
(T

=
t)

Riding the Margueritte

10

If time was discrete: a PMF could look like this.



You’re running to the bus stop. You don’t know 
exactly when the bus arrives.

You have a probability distribution for bus arrival 
times -- some times are more likely than others. 

You show up at 2:15pm. What is P(wait < 5 min)?

2:00pm 20 30

wait <5 min

Bus arrives T mins after 2:00pm

P
(T

=
t)

Riding the Margueritte

10

If time was discrete: a PMF could look like this.



Four Prototypical Trajectories

To the course reader! 



As the bin width goes to 0…..

What Happens as Bin Width Goes to 0 ?



As the bin width goes to 0…..

This limit is where calculus is born!! 

What Happens as Bin Width Goes to 0 ?



As the bin width goes to 0…..

This limit is where calculus is born!! 

A PMF turns into a PDF, which is a 
derivative of a probability. 

Summing probabilities over 
many tiny intervals becomes 
an integral. 

What Happens as Bin Width Goes to 0 ?

Reimann sums
Finite differences 
become a derivative



You’re running to the bus stop. You don’t know 
exactly when the bus arrives.

You have a probability distribution for bus arrival 
times -- some times are more likely than others. 

You show up at 2:15pm. What is P(wait < 5 min)?

2:00pm 20 30

wait <5 min

Bus arrives T mins after 2:00pm

f(
T

=
t)

Riding the Margueritte

10

P(15 < T ≤ 20)

When interval sizes tend towards 0:

❑ Time is now a continuous variable

❑ The probability mass function (PMF) 
becomes a derivative called a 
probability density function (PDF)

❑ Probability are now calculated as 
area under the curve



Time For Integrals!!!!

Piech & Cain, CS109, Stanford University



The probability density function (PDF) of a 
continuous random variable represents the 
relative likelihood of various values.

Units of probability divided by units of X. 
Integrate it to get probabilities!

Probability Density Function



This is another way to write the PDF

The probability density function (PDF) of a 
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This is another way to write the PDF

The probability density function (PDF) of a 
continuous random variable represents the 
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Units of probability divided by units of X. 
Integrate it to get probabilities!

Probability Density Function



The probability density function (PDF) of a 
continuous random variable represents the 
relative likelihood of various values.

Units of probability divided by units of X. 
Integrate it to get probabilities!

Probability Density Function



PDFs like f(X = x)  vs.  PMFs like P(X = x)

“The probability that a discrete random variable X takes on 
the value x.”

“The derivative of the probability that a continuous random 
variable X takes at the value x.”

They are both measures of how likely X is to take on the value x. 

Sometimes called the distribution function. 



A probability!

What do you get if you 
integrate over a 

probability density function?



The Relative Values of PDFs Are Meaningful

Probability density functions are derivatives that articulate relative belief.
 

Let X be the # of minutes after 2pm that the bus arrives at a stop.

x x x

Which of these represent that the bus’s arrival
is more likely to be close to 3:00pm?

0 60 0 60 0 60

A B C



The Relative Values of PDFs Are Meaningful

x x x

Which of these represent that the bus’s arrival
is more likely to be close to 3:00pm?

0 60 0 60 0 60

A B C

Piech & Cain, CS109, Stanford University

Probability density functions are derivatives that articulate relative belief.
 

Let X be the # of minutes after 2pm that the bus arrives at a stop.



The relative value of 

probability densities is 

meaningful



Truths of Probability For Continuous Random Variables

Truth 1: Area under the curve!



Truth 2:

Truths of Probability For Continuous Random Variables

Truth 1:

Since the integral is a 
probability (Axiom 1)

Area under the curve!

⍺ = 0 β = 0.5

x

PDF
2

Can a PDF ever have a value > 1?
Yes!



Truth 2:

Truth 3:

Truths of Probability For Continuous Random Variables

Truth 1:

Since the integral is a 
probability (Axiom 1)

That’s all possible values 
(Axiom 2)

Area under the curve!



Truth 2:

Truth 3:

Truths of Probability For Continuous Random Variables

Truth 1:

Truth 4:

Since the integral is a 
probability (Axiom 1)

That’s all possible values 
(Axiom 2)

What a time to be alive…

Area under the curve!



74

Solve for K

Truth 2:

Truth 3:

Truth 1:

Truth 4:

Since the integral is a 
probability (Axiom 1)

That’s all possible values 
(Axiom 2)

What a time to be alive…

Area under the curve!



2:00pm 20 30

wait <5 min

Bus arrives T mins after 2:00pm

f(
T

=
t)

PDFs Need an Integral

10

P(15 < T ≤ 20)

What is the probability that the 
bus arrives at: 12.12332343234… 
mins after 2pm?



A probability!

What do you get if you 
integrate over a 

probability density function?



Four Prototypical Trajectories

Pedagogic Pause



Four Prototypical Trajectories

You are ready for the classic 

continuous random variables



It’s Time
To Talk About Time, Again



1906 Earthquake 
Magnitude 7.8

How long until the next “big one”?



For any Poisson Process, the Exponential RV models time until an event:

Exponential Random Variable

𝑓 𝑥 = ቊ𝜆𝑒−𝜆𝑥  if 𝑥 ≥ 0
0 otherwise

𝑋~Exp(𝜆)

PDF:

Piech & Cain, CS109, Stanford University



For any Poisson Process, the Exponential RV models time until an event:

Exponential Random Variable

𝑓 𝑥 = ቊ𝜆𝑒−𝜆𝑥  if 𝑥 ≥ 0
0 otherwise

𝑋~Exp(𝜆)

PDF:

Examples:
• Time until next earthquake
• Time until a ping reaches a web server
• Time until next Uber request

Piech & Cain, CS109, Stanford University



For any Poisson Process, the Exponential RV models time until an event:

Exponential Random Variable

𝑓 𝑥 = ቊ𝜆𝑒−𝜆𝑥  if 𝑥 ≥ 0
0 otherwise

𝑋~Exp(𝜆)

PDF:

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

𝑓 𝑋 = 𝑥

𝑥

Examples:
• Time until next earthquake
• Time until a ping reaches a web server
• Time until a Uranium atom decays

like “exponential decay”

Piech & Cain, CS109, Stanford University



The process for an 

Exponential and a 

Poisson are the same. So 

is the parameter 𝜆. The 

question is different 



Piech, CS109, Stanford University

1906 Earthquake 
Magnitude 7.8
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Based on historical data, major earthquakes (magnitude 8.0+) 
happen at a rate of 0.002 per year*. What is the probability of 

a major earthquake in the next 30 years?

Y = Years until the next earthquake of magnitude 8.0+

*In California, according to the USGS, 2015

How Long Until the Next Earthquake
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Integral Review
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Based on historical data, major earthquakes (magnitude 8.0+) 
happen at a rate of 0.002 per year*. What is the probability of 

a major earthquake in the next 30 years?

Y = Years until the next earthquake of magnitude 8.0+

How Long Until the Next Earthquake

*In California, according to the USGS, 2015
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Based on historical data, major earthquakes (magnitude 8.0+) 
happen at a rate of 0.002 per year*. What is the expected 

number of years until the next earthquake?

Y = Years until the next earthquake of magnitude 8.0+

How Long Until the Next Earthquake

*In California, according to the USGS, 2015
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Based on historical data, major earthquakes (magnitude 8.0+) 

happen at a rate of 0.002 per year*. What is the standard 

deviation of years until the next earthquake?

Y = Years until the next earthquake of magnitude 8.0+

How Long Until the Next Earthquake

*In California, according to the USGS, 2015
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Based on historical data, major earthquakes (magnitude 8.0+) 
happen at a rate of 0.002 per year*. What is the probability of 

zero major earthquakes magnitude next year?

X = Number of major earthquakes next year 

How Many Earthquakes

*In California, according to the USGS, 2015
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Four Prototypical Trajectories

Is there a way to avoid integrals?
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A cumulative distribution function (CDF) is a “closed form” equation for the probability 

that a random variable is less than a given value

This is also shorthand notation 
for the CDF

If you learn how to use a 
cumulative distribution 
function, you can avoid 

integrals!

Cumulative Distribution Function



Piech, CS109, Stanford University

Cumulative Distribution Function



Piech, CS109, Stanford University

CDF of an Exponential
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Probability 
density 
function

Cumulative 
distribution 

function

x

x

Using CDF Example. X is Exp( = 1) 



Piech, CS109, Stanford University

Probability 
density 
function

Cumulative 
distribution 

function

x

x

P(X < 2)

Using CDF Example. X is Exp( = 1) 
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Probability 
density 
function

Cumulative 
distribution 

function

f(x)

x

x

P(X < 2)

Using CDF Example. X is Exp( = 1) 
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Probability 
density 
function

Cumulative 
distribution 

function

f(x)

x

x

P(X < 2)
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Using CDF Example. X is Exp( = 1) 
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Probability 
density 
function

Cumulative 
distribution 

function

x

x

P(X > 1)

Using CDF Example. X is Exp( = 1) 
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Cumulative 
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Probability 
density 
function

Cumulative 
distribution 

function

x

x

P(X > 1)

or

Using CDF Example. X is Exp( = 1) 
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Probability 
density 
function

Cumulative 
distribution 

function

x

x

P(1 < X < 2)

Using CDF Example. X is Exp( = 1) 
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Probability 
density 
function

Cumulative 
distribution 

function

x

x

P(1 < X < 2)

Using CDF Example. X is Exp( = 1) 



Piech, CS109, Stanford University

Probability 
density 
function

Cumulative 
distribution 

function

f(x)

x

x

P(1 < X < 2)

or

Using CDF Example. X is Exp( = 1) 
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Based on historical data, earthquakes of magnitude 8.0+ happen 
at a rate of 0.002 per year*. What is the probability of 

a major earthquake in the next 4 years?

Y = Years until the next earthquake of magnitude 8.0+

*According to USGS, 2015

Feeling lucky?

Probability of Earthquake in Next 4 Years?
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Two Classic Random Variables
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Funnest Fact: Exponential is Memoryless!

What if s time has passed?
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What if s time has passed?

Piech & Cain, CS109, Stanford University

Funnest Fact: Exponential is Memoryless!
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