Continuous Variables

Chris Piech
CS109, Stanford University
What is a check in CS109?

Functionality and style grades for the assignments use the following scale:

- **✓+** Satisfies all requirements of the assignment. An “A”
- **✓** Meets most requirements, but with some problems. An “A-” / “B+”
- **✓-** Has more serious problems, such as not explaining work.
- **-** Progress was made.

The modal grade in CS109

If your overall score is a **✓+** you rocked the PSet.
Small nit: Avoid answers that are just equations

Numeric Answer: Enter your answer

Explanation:

\[
|E| = \binom{f}{1} \binom{u - f}{s - 1} = 50 \cdot \binom{11950}{249}
\]

A small group of students made this mistake on pset1.
ILL. No. 65. MEMORIAL ARCH, WITH CHURCH IN BACKGROUND, STANFORD UNIVERSITY, SHOWING TYPES OF CARVED WORK WITH THE SANDSTONE.
Review
Binomial Random Variable

The number of successes, in n independent trials, where each trial is a success with probability p:

(H, H, H, H, T, T, T, T, T, T)
(H, H, H, T, H, T, T, T, T, T)
(H, H, H, T, T, H, T, T, T, T)
(H, H, H, T, T, T, H, T, T, T)
(H, H, H, T, T, T, T, H, T, T)
(H, H, T, H, H, T, T, T, T, H)
(H, H, T, H, H, T, T, T, H, T)
(H, H, T, H, H, T, T, H, T, T)
(H, H, T, H, T, H, T, H, T, T)
(H, H, T, H, T, T, H, H, T, T)
(H, H, T, H, T, T, T, H, H, T)
(H, H, T, T, H, H, T, T, T, H)
(H, H, T, T, H, H, T, T, T, H)
(H, H, T, T, H, T, H, T, T, H)
(H, H, T, T, H, T, T, H, T, H)
(H, H, T, T, T, H, H, T, T, H)
(H, H, T, T, T, H, T, H, T, H)
(H, H, T, T, T, T, H, H, T, H)
(H, H, T, T, T, T, T, H, H, H)
Binomial Random Variable

Notation: $X \sim \text{Bin}(n, p)$
Description: Number of "successes" in n identical, independent experiments each with probability of success p.
Parameters: $n \in \{0, 1, \ldots\}$, the number of experiments.
$p \in [0, 1]$, the probability that a single experiment gives a "success".
Support: $x \in \{0, 1, \ldots, n]\$
PMF equation: $\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$
Expectation: $E[X] = n \cdot p$
Variance: $\text{Var}(X) = n \cdot p \cdot (1 - p)$
PMF graph:

Parameter n: 20 Parameter p: 0.60

Bernoulli Random Variable

Notation: $X \sim \text{Bern}(p)$
Description: A boolean variable that is 1 with probability p
Parameters: p, the probability that $X = 1$.
Support: x is either 0 or 1
PMF equation: $\Pr(X = x) = \begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \end{cases}$
Expectation: $E[X] = p$
Variance: $\text{Var}(X) = p(1 - p)$
PMF graph:

Parameter p: 0.80
Poisson Random Variable

Probability of \(k \) requests from this area in the next 1 min
Poisson Random Variable

Notation: \(X \sim \text{Poi}(\lambda) \)

Description: Number of events in a fixed time frame if (a) the events occur with a constant mean rate and (b) they occur independently of time since last event.

Parameters: \(\lambda \in \{0, 1, \ldots\} \), the constant average rate.

Support: \(x \in \{0, 1, \ldots\} \)

PMF equation: \(\Pr(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} \)

Expectation: \(\mathbb{E}[X] = \lambda \)

Variance: \(\text{Var}(X) = \lambda \)

PMF graph:

Parameter \(\lambda \): 5
Learning Goals

1. Comfort using new discrete random variables
2. Integrate a density function (PDF) to get a probability
3. Use a cumulative function (CDF) to get a probability
Goal: Be Able to Use a New Random Variable

Don’t have to derive all of the following distributions. We want you to get a sense of how random variables work.
Goal: Be Able to Use a New Random Variable

You are learning about servers...

You read about the MD1 queue...

You find a paper that says the length of a server “busy period” is distributed as a Borel with parameter $\mu = 0.2$...
Here are a few more Random Variables

<table>
<thead>
<tr>
<th>Single Event</th>
<th>Multiple Events</th>
<th>Continuous Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>One trial</td>
<td>Several trials</td>
<td>Interval of time</td>
</tr>
<tr>
<td>$X \sim \text{Ber}(p)$</td>
<td>$X \sim \text{Bin}(n, p)$</td>
<td>$X \sim \text{Poi} \left(\lambda \right)$</td>
</tr>
<tr>
<td>$n = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X \sim \text{Geo}(p)$</td>
<td>$X \sim \text{NegBin}(r, p)$</td>
<td>$X \sim \text{Exp} \left(\lambda \right)$</td>
</tr>
<tr>
<td>$r = 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geometric Random Variable

X is **Geometric** Random Variable: \(X \sim \text{Geo}(p) \)

- X is number of independent trials until first success
- \(p \) is probability of success on each trial
- X takes on values 1, 2, 3, …, with probability:

\[
P(X = n) = (1 - p)^{n-1} p
\]

\[
E[X] = \frac{1}{p}
\]

\[
\text{Var}(X) = \frac{1 - p}{p^2}
\]
Negative Binomial Random Variable

X is **Negative Binomial** RV: \(X \sim \text{NegBin}(r, p) \)

- X is number of independent trials until r successes
- \(p \) is probability of success on each trial
- X takes on values \(r, r + 1, r + 2 \ldots \), with probability:

\[
P(X = n) = \binom{n-1}{r-1} p^r (1 - p)^{n-r}, \text{ where } n = r, r + 1, \ldots
\]

- \(E[X] = r/p \quad \text{Var}(X) = r(1 - p)/p^2 \)

Note: Geo(\(p \)) \(\sim \) NegBin(1, \(p \))
Geometric and Negative Binomial

Geometric Random Variable

Notation: \(X \sim \text{Geo}(p) \)

Description: Number of experiments until a success. Assumes independent experiments each with probability of success \(p \).

Parameters: \(p \in [0, 1] \), the probability that a single experiment gives a "success".

Support: \(x = \{1, \ldots, \infty\} \)

PMF equation: \(P(X = x) = (1 - p)^{x-1}p \)

Expectation: \(E[X] = \frac{1}{p} \)

Variance: \(\text{Var}(X) = \frac{1-p}{p^2} \)

PMF graph: Parameter \(p = 0.20 \)

Negative Binomial Random Variable

Notation: \(X \sim \text{NegBin}(r, p) \)

Description: Number of experiments until \(r \) successes. Assumes each experiment is independent with probability of success \(p \).

Parameters: \(r > 0 \), the number of success we are waiting for.

\(p \in [0, 1] \), the probability that a single experiment gives a "success".

Support: \(x = \{r, \ldots, \infty\} \)

PMF equation: \(P(X = x) = \binom{x-1}{r-1} p^r (1-p)^{x-r} \)

Expectation: \(E[X] = \frac{r}{p} \)

Variance: \(\text{Var}(X) = \frac{r(1-p)}{p^2} \)

PMF graph: Parameter \(r = 3 \) Parameter \(p = 0.20 \)
Discrete Distributions

Bernoulli:
• indicator of coin flip $X \sim \text{Ber}(p)$

Binomial:
• # successes in n coin flips $X \sim \text{Bin}(n, p)$

Poisson:
• # successes in a fixed interval of time $X \sim \text{Poi}(\lambda)$

Geometric:
• # coin flips until success $X \sim \text{Geo}(p)$

Negative Binomial:
• # trials until r successes $X \sim \text{NegBin}(r, p)$
Each person you date has a 0.2 probability of being someone you spend your life with. What is the average number of people one will date? What is the standard deviation?

Your meta goal: what steps would you take to answer this question?
Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?

Justice Breyer [Stanford Alum] opened the questioning by invoking the binomial theorem. He hypothesized a scenario involving “an urn with a thousand balls, and sixty are blue, and nine hundred forty are purple, and then you select them at random... twelve at a time.” According to Justice Breyer and the binomial theorem, if the purple balls were under represented jurors then “you would expect... something like a third to a half of juries would have at least one minority person” on them.
Approximation using Binomial distribution

- Assume P(blue ball) constant for every draw $= 60/1000$
- $X = \#$ blue balls drawn. $X \sim \text{Bin}(12, 60/1000 = 0.06)$
- $P(X \geq 1) = 1 - P(X = 0) \approx 1 - 0.4759 = 0.5240$

In Breyer’s description, should actually expect just over half of juries to have at least one non-white person on them
You “mine a bitcoin” if, for given data D, you find a salt number N such that $\text{Hash}(D, N)$ produces a string that starts with g zeroes.
You “mine a bitcoin” if, for given data D, you find a number N such that $\text{Hash}(D, N)$ produces a string that starts with g zeroes.

(a) What is the probability that the first number you try will produce a bit string which starts with g zeroes (in other words you mine a bitcoin)?

Let X be the number of zeros in the first g bits. $X \sim \text{Bin}(n = g, p = 0.5)$

$$P(X = 0) = \binom{g}{0} \frac{1}{2}^g = \frac{1}{2}^g$$

Call this answer p_a

(b) What is the probability that you will need under 100 attempts to mine 2 bit coins?

Let Y be the number of tries until you mine 5 bitcoins. $Y \sim \text{NegBin}(r = 2, p = p_a)$

$$P(Y < 100) = \sum_{x=0}^{100} P(Y = x)$$

$$= \sum_{i=0}^{100} \binom{x - 1}{r - 1} p^r (1 - p)^{x-r}$$
Pedagogic Pause
Big hole in our knowledge
Not all values are discrete
random()?
Poisson

Say the average rate of earthquakes is 1 every 100 years.

We can talk about the probability distribution of different numbers of earthquakes next year.

We can’t talk about the probability distribution of the amount of time until the next earthquake.
Riding the Marguerite
You are running to the bus stop. You don’t know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:20pm.

What is $P(\text{wait} < 5 \text{ minutes})$?

What is the probability that the bus arrives at: 2:17pm and 12.1233911102389234 seconds?
You are running to the bus stop. You don’t know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is $P(\text{wait} < 5 \text{ minutes})$?
You are running to the bus stop. You don’t know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is \(P(\text{wait < 5 minutes}) \)?

\[
P(15 < T \leq 20)
\]

<table>
<thead>
<tr>
<th>P(T = t)</th>
<th>Bus arrives (t) mins after 2:00pm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2:00pm</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
You are running to the bus stop. You don’t know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is $P(\text{wait} < 5 \text{ minutes})$?
Riding the Marguerite

You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is $P(\text{wait} < 5 \text{ minutes})$?
The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of* X. **Integrate it** to get probabilities!

\[P(a < X < b) = \int_{x=a}^{b} f(X = x) \, dx \]
The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of X*. **Integrate it** to get probabilities!

\[
P(a < X < b) = \int_{x=a}^{b} f_X(x) \, dx
\]

This is another way to write the PDF.
Probability Density Function

The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of X*. **Integrate it** to get probabilities!

\[
P(a < X < b) = \int_{x=a}^{b} f(X = x) \, dx
\]
Integrals!

*loving, not scary
Integrals

\[\int_{x=a}^{b} g(x) \, dx \]

Diagram of an integral with limits from \(a \) to \(b \) and function \(g(x) \).
You are running to the bus stop. You don’t know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is \(P(\text{wait} < 5 \text{ minutes}) \)?

Probability Density Function

- **wait <5 min**
- **P(15 < T ≤ 20)**
Properties of PDFs

The integral of a PDF gives a probability. Thus:

\[0 \leq \int_{x=a}^{b} f(X = x) \, dx \leq 1 \]

\[\int_{x=-\infty}^{\infty} f(X = x) \, dx = 1 \]
What do you get if you integrate over a probability density function?

A probability!
Probability density functions articulate *relative* belief.

Let X be a random variable which is the # of minutes after 2pm that the bus arrives at the stop:

Which of these represent that you think the arrival is more likely to be close to 3:00pm
The ratio of probability densities is meaningful
$f(X = x)$ is **Not** a Probability

Rather, it has “units” of: probability divided by units of X.
$f(X = x)$ is **Not** a Probability

Note: $f(x)$ can be **greater than 1**!

$\forall t

f(t) = \begin{cases}
2.0 \text{ prob/min} & \text{if } t = 2:20 \text{pm} \\
0.5 \text{ min} & \text{if } t = 2:00 \text{pm} \\
1.0 \text{ prob} & \text{if } t = 2:20 \text{pm}
\end{cases}$

= 1.0 prob
$f(X = x) \text{ vs } P(X = x)$

“The probability that a \textit{discrete} random variable X takes on the value little x. ”

$P(X = x)$ \hspace{1cm} \text{Aka the PMF}

“The \textit{derivative} of the probability that a \textit{continuous} random variable X takes at the value little x. ”

$f(X = x)$ \hspace{1cm} \text{Aka the PDF}

They are both measures of how \textit{likely} X is to take on the value x. Sometimes called the \textit{distribution} function. Sometimes called the \textit{likelihood} functions.
Rephrased as a Standard Continuous Problem

Let X be a continuous random variable

$$f(X = x) = \frac{1}{15708} \sqrt{100^2 - x^2}$$

From simulations

$$P(X > 0) = ?$$

Simple Example from Quantum Physics

Let X be a continuous random variable

Theory

$$f(X = x) = \frac{1}{15708} \sqrt{100^2 - x^2}$$

Practice

From simulations

Approach #1: Integrate over the PDF

$$P(X > 0) = \int_{0}^{100} f(X = x) \, dx$$
Approach #2: Discrete Approximation

Let X be a continuous random variable.

Theory

$$f(X = x) = \frac{1}{15708} \sqrt{100^2 - x^2}$$

Practice

From simulations

$$P(X > 0) \approx \sum_{i=0}^{100} P(X = i)$$
Simple Example from Quantum Physics

Let X be a continuous random variable\(^1\)

Theory

$$f(X = x) = \frac{1}{15708} \sqrt{100^2 - x^2}$$

Practice

From simulations

Approach #3: Know Semi-Circles

$$P(X > 0) = \frac{1}{2}$$
Consider a random 5000x5000 matrix, where each element in the matrix is Uniform(0,1). What is the probability that a selected eigenvalue (\(\lambda\)) of the matrix is greater than 0?*

* With help from Wigner, Chris is rephrased this problem
What do you get if you integrate over a probability \textit{density} function?

A probability!
A uniform random variable is equally likely to be any value in an interval.

\[X \sim \text{Uni}(\alpha, \beta) \]

Probability Density

\[
f(X = x) = \begin{cases}
\frac{1}{\beta - \alpha} & \alpha \leq x \leq \beta \\
0 & \text{otherwise}
\end{cases}
\]

Properties

- \(E[X] = \frac{\beta - \alpha}{2} \)
- \(\text{Var}(X) = \frac{(\beta - \alpha)^2}{12} \)
You are running to the bus stop. You don’t know exactly when the bus arrives. You believe all times between 2 and 2:30 are equally likely.

You show up at 2:15pm. What is $P(\text{wait < 5 minutes})$?

$T \sim \text{Uni}(\alpha = 0, \beta = 30)$

$$P(\text{Wait < 5}) = \int_{15}^{20} \frac{1}{\beta - \alpha} \, dx$$

$$= \left[\frac{x}{\beta - \alpha} \right]_{15}^{20}$$

$$= \left[\frac{x}{30 - 0} \right]_{15}^{20} = \frac{5}{30}$$
Consider an experiment that lasts a duration of time until success occurs. Define an **Exponential** random variable X is the amount of time until success.

- **PDF**
 \[
 f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0 \\ 0 & \text{otherwise} \end{cases}
 \]

- **Support**: $[0, \infty)$
- **Expectation**
 \[
 E[X] = \frac{1}{\lambda}
 \]
- **Variance**
 \[
 \text{Var}(X) = \frac{1}{\lambda^2}
 \]

Examples:
- Time until next earthquake
- Time for request to reach web server
- Time until end of cell phone contract
1906 Earthquake
Magnitude 7.8
Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the probability of zero major earthquakes magnitude next year?

$X = \text{Number of major earthquakes next year}$

$X \sim \text{Poi}(\lambda = 0.002)$

$P(X = 0) = \frac{\lambda^0 e^{-\lambda}}{0!} = \frac{0.002^0 e^{-0.002}}{0!} \approx 0.998$

*In California, according to the USGS, 2015
How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the probability of a major earthquake in the next 30 years?

\[Y = \text{Years until the next earthquake of magnitude 8.0+} \]

\[Y \sim \text{Exp}(\lambda = 0.002) \]

\[f_Y(y) = \lambda e^{-\lambda y} \]

\[= 0.002^{-0.002y} \]

\[P(Y < 30) = \int_{0}^{30} 0.002e^{-0.002y} \, dy \]

*In California, according to the USGS, 2015
Integral Review

\[\int e^{cx} \, dx = \frac{1}{c} e^{cx} \]
How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the probability of a major earthquake in the next 30 years?

\[
Y = \text{Years until the next earthquake of magnitude 8.0+} \\
Y \sim \text{Exp}(\lambda = 0.002) \\
f_Y(y) = \lambda e^{-\lambda y} \\
P(Y < 30) = \int_0^{30} 0.002e^{-0.002y} \, dy \\
= 0.002 \left[-500e^{-0.002y} \right]_0^{30} \\
= \frac{500}{500} \left(-e^{-0.06} + e^0 \right) \\
\approx 0.06
\]

*In California, according to the USGS, 2015
How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the expected number of years until the next earthquake?

\[Y = \text{Years until the next earthquake of magnitude 8.0+} \]

\[Y \sim \text{Exp}(\lambda = 0.002) \]

\[E[Y] = \frac{1}{\lambda} = \frac{1}{0.002} = 500 \]
How Long Until the Next Earthquake

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the standard deviation of years until the next earthquake?

\[Y = \text{Years until the next earthquake of magnitude 8.0+} \]

\[Y \sim \text{Exp}(\lambda = 0.002) \]

\[\text{Var}(Y) = \frac{1}{\lambda^2} = \frac{1}{(0.002)^2} = 250,000 \text{ years}^2 \]

\[\text{Std}(Y) = \sqrt{\text{Var}(X)} = 500 \text{ years} \]

*In California, according to the USGS, 2015
Is there a way to avoid integrals?
A cumulative density function (CDF) is a “closed form” equation for the probability that a random variable is less than a given value:

\[F(x) = P(X < x) \]

If you learn how to use a cumulative density function, you can avoid integrals!

\[F_X(x) \]

This is also shorthand notation for the PMF.
Cumulative Density Function

\[F(x) = P(X < x) \]

\[x = 2 \quad \Rightarrow \quad 0.03125 \]
CDF of an Exponential

\[F_X(x) = 1 - e^{-\lambda x}\]

\[P(X < x) = \int_{y=-\infty}^{x} f(y) \, dy\]

\[= \int_{y=0}^{x} \lambda e^{-\lambda y} \, dy\]

\[= \frac{\lambda}{\lambda} \left[-e^{-\lambda y} \right]_{0}^{x}\]

\[= [-e^{-\lambda x}] - [-e^{0}]\]

\[= 1 - e^{-\lambda x}\]
Using CDF Example. X is \(\text{Exp}(\lambda = 1) \)

Probability density function

\[
f(x) = \lambda e^{-\lambda x}
\]

Cumulative density function

\[
F_X(x) = P(X < x) = \int_{-\infty}^{x} f(y) \, dy
\]

\[
F(x) = 1 - e^{-\lambda x}
\]
Using CDF Example. X is $\text{Exp}(\lambda = 1)$

Probability density function

$$f(x) = \lambda e^{-\lambda x}$$

Cumulative density function

$$F_X(x) = P(X < x) = \int_{y=-\infty}^{x} f(y) \, dy$$

$$F(x) = 1 - e^{-\lambda x}$$

$$P(X < 2)$$
Using CDF Example. \(X \) is \(\text{Exp}(\lambda = 1) \)

Probability density function

\[f(x) = \lambda e^{-\lambda x} \]

Cumulative density function

\[F_X(x) = P(X < x) = \int_{-\infty}^{x} f(y) \, dy \]

\[F(x) = 1 - e^{-\lambda x} \]

\[P(X < 2) = \int_{-\infty}^{2} f(x) \, dx \]
Using CDF Example. X is $\text{Exp}(\lambda = 1)$

Probability density function

$$f(x) = \lambda e^{-\lambda x}$$

Cumulative density function

$$F(x) = 1 - e^{-\lambda x}$$

$$P(X < 2) = \int_{x=-\infty}^{2} f(x) \, dx$$

or

$$P(X < 2) = F(2) = 1 - e^{-2} \approx 0.84$$
Using CDF Example. X is Exp(\(\lambda = 1\))

Probability density function

\[f(x) = \lambda e^{-\lambda x} \]

Cumulative density function

\[F_X(x) = P(X < x) = \int_{-\infty}^{x} f(y) \, dy \]

\[F(x) = 1 - e^{-\lambda x} \]

\[P(X > 1) \]
Using CDF Example. X is Exp(\(\lambda = 1 \))

Probability density function

\[f(x) = \lambda e^{-\lambda x} \]

Cumulative density function

\[F_X(x) = P(X < x) = \int_{y=-\infty}^{x} f(y) \, dy \]

\[F(x) = 1 - e^{-\lambda x} \]

\[P(X > 1) = \int_{x=1}^{\infty} f(x) \, dx \]
Using CDF Example. X is Exp(\(\lambda = 1\))

\[
\begin{align*}
f(x) &= \lambda e^{-\lambda x} \\
F(x) &= 1 - e^{-\lambda x} \\
F_X(x) &= P(X < x) \\
&= \int_{y=-\infty}^{x} f(y) \, dy \\
P(X > 1) &= \int_{x=1}^{\infty} f(x) \, dx \\
&= 1 - F(1) \\
&= e^{-1} \\
&\approx 0.37
\end{align*}
\]
Using CDF Example. X is $\text{Exp}(\lambda = 1)$

Probability density function

$$f(x) = \lambda e^{-\lambda x}$$

Cumulative density function

$$F_X(x) = P(X < x) = \int_{-\infty}^{x} f(y) \, dy$$

$$F(x) = 1 - e^{-\lambda x}$$

$$P(1 < X < 2)$$
Using CDF Example. X is Exp(\(\lambda = 1\))

Probability density function

\[f(x) = \lambda e^{-\lambda x} \]

Cumulative density function

\[F(x) = 1 - e^{-\lambda x} \]

\(F_X(x) = P(X < x) \)

\[= \int_{y=-\infty}^{x} f(y) \, dy \]

\[P(1 < X < 2) \]

\[= \int_{x=1}^{2} f(x) \, dx \]
Using CDF Example. X is $\text{Exp}(\lambda = 1)$

Probability density function

$$f(x) = \lambda e^{-\lambda x}$$

Cumulative density function

$$F(x) = 1 - e^{-\lambda x}$$

$$F_X(x) = P(X < x) = \int_{y=-\infty}^{x} f(y) \, dy$$

$$P(1 < X < 2) = \int_{x=1}^{2} f(x) \, dx$$

or

$$= F(2) - F(1) = (1 - e^{-2}) - (1 - e^{-1}) \approx 0.23$$
Probability of Earthquake in Next 4 Years?

Based on historical data, earthquakes of magnitude 8.0+ happen at a rate of 0.002 per year*. What is the probability of an major earthquake in the next 4 years?

\[Y = \text{Years until the next earthquake of magnitude 8.0+} \]

\[Y \sim \text{Exp}(\lambda = 0.002) \quad F(y) = 1 - e^{-0.002y} \]

\[P(Y < 4) = F(4) = 1 - e^{-0.002 \cdot 4} \approx 0.008 \]

Feeling lucky?

*According to USGS, 2015
Properties for Continuous Random Variable

- $E[X]$ (Expectation)
- $Var(X)$ (Variance)
- $Std(X)$ (Standard Deviation)
- $f(X = x)$ (Probability Density Function)
- $F_X(x)$ (Cumulative Distribution Function)
- Support
- Semantic Meaning
Here are a few more Random Variables

<table>
<thead>
<tr>
<th></th>
<th>number of successes</th>
<th>time to get successes</th>
</tr>
</thead>
<tbody>
<tr>
<td>One trial</td>
<td>(X \sim \text{Ber}(p))</td>
<td>(X \sim \text{Geo}(p))</td>
</tr>
<tr>
<td>Several trials</td>
<td>(X \sim \text{Bin}(n, p))</td>
<td>(r = 1)</td>
</tr>
<tr>
<td>Interval of time</td>
<td>(X \sim \text{Poi}(\lambda))</td>
<td>(X \sim \text{Exp}(\lambda))</td>
</tr>
</tbody>
</table>

Here are some examples:

- One trial:
 - \(n = 1 \)
 - \(r = 1 \)

- Several successes:
 - \(n \) successes
 - \(r \) successes

- One success:
 - \(X \sim \text{Poi}(\lambda) \)
 - \(X \sim \text{Exp}(\lambda) \)
That is all folks!