Normal Distribution
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Announcement — Sign Up For PEP
Personal Exam Prep (PEP)

- 15 muinute 1:1 meeting with a TA twice a quarter.

- Happens the week before each exam.
- Midterm PEP 1s next week (Mon 2/2-Weds 2/4)!!
- Required part of the course.

Sign up Link 1s Live !!

Signups are first come first serve.



https://psetapp.stanford.edu/win26/pep/midterm/signup

Announcement — Sign Up For PEP
PEP Frequently Asked Questions:
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(1) Am I graded on my PEP?

Yes !! Like section. We will assume you are caught up through Friday’s lecture
(1/30). Don’t need to solve everything perfectly, but need to be able to engage
meaningfully.
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ready to talk about 1t, you are all set! TA4s each spend 7 hours of their time next
week domg PEPs — so we want to use that as effectively as we can.




Announcement — Sign Up For PEP

PEP Frequently Asked Questions:

(1) Am I graded on my PEP?

Yes !! Like section. We will assume you are caught up through Friday’s lecture
(1/30). Don’t need to solve everything perfectly, but need to be able to engage

meaningfully.

(2) What can I do to prepare for PEP?

Nothing special. As long as you are caught up with course content and are
ready to talk about 1t, you are all set! TA4s each spend 7 hours of their time next
week domg PEPs — so we want to use that as effectively as we can.

(3) Is PEP a required part of the course?
Yes.




Enough Servers?

You are running a massive website. On the busiest minute you receive:
Average of 10° requests
Variance of 10* requests
You are going to buy n servers
Each server can handle 10,000 requests per min, otherwise you drop requests
What 1s the smallest value of n such that P(drop) < 0.0001

STRANGER THINGS

3, Actor Award Nominee &
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Review: Probability Density Function

The limit at discretization size — 0
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Recall the definition of a derivative: lim

h—0

fla+h) - f(a)
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What do you get if you
Integrate over a
probability density function?

A probability!



Review: Probability Density Function

The probability density function (PDF) of a
continuous random variable represents the
derivative of probability at a given point.

Units of probability divided by units of X.
Integrate it to get probabilities!

Pla < X <b) = /[f(X::z;)]i:c




Uniform and Exponential Distributions

Uniform Random Variable Exponential Random Variable
Notation: X ~ Uni(a, §) ) . 1 ot likelihood Notation: X ~ Exp())
Description: A conti iable that t , Wit ikeli , o . . . . .
eseription b :;n rmous ;a; om variable Tt fatces of vatues, with equal Arethoo Description: Time until next events if (a) the events occur with a constant mean rate and
€Iween o an
Parameters: o € R, the minimum valuc of the variable. (b) they occur independently of time since last event.
B ER,B> a, the maximum value of the variable. Parameters: A € {0,1,...}, the constant average rate.
Support: z € [a, f] Support: zeRT
PDF equation: Hz) = { 6,3+a f;)r ¢ € [a,f PDF equation: f(z) = Ae ™
else . Az
o : Fle)y=1—e¢
CDF equation: o forzela,f] CDF cquation (=)
F(z)= 40 forz < a Expectation: E(X]|=1/A
! forz > § Variance: Var(X) = 1/)?
Expectation: EX] = 1(a+h)
Variance: Var(X) = (8- a)? PDF graph:
PDF graph: Parameter A\: 5
Parameter a: 0 Parameter 5: 1
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Cumulative Distribution Function

A cumulative distribution function (CDF) is a “closed form” equation for the probability
that a random variable is less than a given value

F(x)=P(X < x)

If you learn how to use a

cumulative distribution

function, you can avoid
integrals!




Using CDF Example. X is Exp(4 = 1)

Probability x:-0.227607977 y:1.25559301 P(l < X < 2)
density
function
2
— [ f@) de
r=1
or
Cumulative + x-0.070795010 y:-0.073361175
distribution -]
function B — (2) — F(1
=(1—e?)
—(1—eh
~ 0.23
4 45 5




Did you know? Exponential is Memoryless! Fle) =1-¢

X ~ Exp(}) X = time until the next event

P(X >s+tX>s)=P(X>t) \Whatifs time has passed?




Did you know? Exponential is Memoryless! Flz)=1-e™

X ~ Exp(}) X = time until the next event

P(X >s+tX>s)=P(X>t) \Whatifs time has passed?

P(X > 8|X >5)=P(X > 3)

If | have already waited 5 minutes for an event, what is the
probability | will have to wait more than 3 minutes?

The same as the probability of waiting 3 minutes. It doesn’t
care about how long you have already waited!

No “memory”!!
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Did you know? Exponential is Memoryless! Flz)=1-e™

X ~ Exp(}) X = time until the next event

P(X >s+tX>s)=P(X>t) \Whatifs time has passed?

Which 1s something we can prove:

P(X >s+tand X > s)
P(X > s)
P(X > s+1t)

— P(X > 5) Because X > s + t implies X > s

P(X>s+tX>s)= Def of conditional prob.




Did you know? Exponential is Memoryless! Fle)=1-e™

X ~ Exp(}) X = time until the next event

P(X >s+tX>s)=P(X>t) \Whatifs time has passed?

Which 1s something we can prove:

P(X >s+tand X > s)

P(X>s+tX>s)= Def of conditional prob.

P(X > s)
P(X > t
— g?(X j :) ) Because X > s + t implies X > s
— 1~ Fx(s +1) Def of CDF
1-— Fx(S)
e—)\(s+t)
= 3 By CDF of Exp
e s
— e M Simplify
=1— Fx(t) By CDF of Exp

=P(X >1t) Def of CDF




I am going to use these two properties later in class today

Properties of Expectation

Property: Expectation of a Linear Transform
E[laX + b] = aE[X] + b

Where a and b are constants and not random variables.

Properties of Variance

Property: Variance of a Linear Transform
Var(aX + b) = a®Var(X)

Where a and b are constants and not random variables.




/Review



Big Day



NormCore: A Few Normal Examples

0.9+ pu=0,0=02 —

p=0,0=10 —
0.8 p=0,0=50 ——
0.7F p=-2,0=05—




Normal Random Variable

def An Normal random variable X 1s defined as follows:

PDF fx) = e~ (x-W?*/20°
XNN(‘L[’O-Z) oV 2T
Support: (—oo, o) Expectation E[X] = U
Variance Var(X) = o2
Other names: Gaussian random variable 05 -

0.4 A

mean |
f ¥ variance o3 -

X~N@o?)

0 - . .
-3 -2 -1




Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

April 1777 = 23 February 1855) was a German mathematician and physicist who made significant
contributions to many fields, including algebra, analysis, astronomy, differential geometry, electrostatics,
ageodesy, geophysics, magnetic fields, matrix theory, mechanics, number theory, optics and statistics.

Sometimes referred to as the Princeps mathematicorum!!! (Latin for "the foremost of mathematicians”) and
"the greatest mathematician since antiguity”, Gauss had an exceptional influence in many fields of
mathematics and science, and is ranked among history’s most influential mathematicians.[]

Did not invent Normal distribution but rather popularized it



http://upload.wikimedia.org/wikipedia/commons/9/9b/Carl_Friedrich_Gauss.jpg

Why the Normgll? These are log-normal

*  Common for natural phepefena: height,
weight, etc.

Most noise is assumed normal

200

e  Most noise 1n the worldAS Normal

180

Height (cm)

160

* Often results from the syl of many
random variables

40 60 80 100
Weight (kg)

Only if they are equally weighted and independent

That’s what they
* Sample means are distributed normally want you to believe...

That is actually true...
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Ockham’'s razorv

Shaving your bypolhesis since 14th Century

“The simplest explanation is usually the best one”



Complexity 1s Tempting

Rl

AU

value

probability

* That describes the training data, but will it generalize?




fmn:—ipmm%mm)

Fewest Assumptions
/‘\ Sim,O/e. "
//genefallz
U
z =
e g
9 e [\\ ﬂ \
a , 7/ 2) \
/ d O \
, /
\
V4 ’ m (\\\\/ﬁ>

value

* A Gaussian maximizes entropy for a given mean and variance




Fewest Assumptions

/‘\ Slfn,o/e. Wi
aliz
u
z =1 =~
= S N
o]
3 L [\\ ﬂ
o / \
o , V4 = \
2
7 O
p \
/7
/ d m A\
/ , >

value

* A Gaussian makes the fewest assumptions after matching mean and varianceg ==




Normal 1s Beautiful!



Normal Probability Density Function
N (p,0?) flz) = —— 5"




Anatomy of a Beautiful Equation
N(,LL, 0-2) the distance to the mean

“exponential”

1 —(z—p)?

T) = € 202
N

probability density
at x a constant




Does 1t look less scary like this? f(z) =

This means "e to the power of" and is
common function in code math libraries

fo) e[ S5

This means "proportional to". There is a constant but
there are many cases where we don’t care what it is!

What if you had to take the log of this function?




Lets go!



Let’s Try It Out: Submarine Manufacturing

Your team is tasked with producing the side
panels for Deep Sea Submarines. Physics
requires all panels to be built within 10 micros
of 500. Panel thickness is normally distributed.
You check how precise your manufacturing is,
and find these stats:

* Average panel thickness: u = 500 microns
 Variance of thickness: 6% = 36 microns?2

What fraction of the panels you manufacture will meet standards?
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Let’s Try It Out: Submarine Manufacturing

Your team is tasked with producing the side
panels for Deep Sea Submarines. Physics
requires all panels to be built within 10 micros
of 500. You check how precise your
manufacturing is, and find these stats:

* Average panel thickness: u = 500 microns
* Variance of thickness: 6% = 36 microns?

What fraction of the panels you manufacture will meet standards?

X~N(u =500,0°% = 36)

510

P(490 < X <510) = f(X =x)dx = f
490 490 OV 2T

510 1

e_




Submarine Manufacturing

510

P(490 < X <£510) = f(X =x)dx = j
490 100 OV2m

510 1 ~ (x — ﬂ)z
e 20° dx

o

) Loving, not scary

v dv ..except this time

41




No closed form for the integral



No closed form for F(x)



Spoiler: Numerically Solved CDF

N(p, 0
,UJ, O A function that has been solved for numerically

/

Flz)=o %

The cumulative density
function of any normal

* We are going to spend the next few slides getting here




Linear Transtform of a Normal 1s... Normal!
Let X ~ N (u,0°)

Y =aX 4+ b isalsoNormal

ElY] = ElaX + b] Var(Y) = Var(aX + b)
=aB[X]+b = a*Var(X)
=ap+b = a’0”

4 )

Y ~ N(ap+b,ac?)




Aside: Celsius to Fahrenheit Y=aX+b Y ~N(au+bda'o?)

Average temp in Palo Alto (on Jan 29™) What is the distribution in Fahrenheit?
in Celsius:

X ~N(up=13,0°=1)

g Let ¥ =1.8X + 32

[\ be the temperature in Fahrenheit.
Distribution

in Celsius Because this is a linear transform...

Y ~ 2 2
Distribution in Nlap+b,a 02)

A AR ’

10 20 30 40 50 o©0

Probability Density




Linear Transtform of a Normal 1s... Normal!
Let X ~ N (u,0°)

Y =aX 4+ b isalsoNormal

ElY] = ElaX + b] Var(Y) = Var(aX + b)
=aB[X]+b = a*Var(X)
=ap+b = a’0”

4 )

Y ~ N(ap+b,ac?)




The cutest linear transform

Let X ~ N (u,0?)

Y = aX + b isalsoNormal
Y ~ N(ap +b,a%c”)

There is a special case of linear transform for any X:




The Standard Normal

Z ~N(p=0,0°=1)

[ )

A Mean (u) =0

I Variance (02) = 1

\ J

*This is the probability density function for the standard normal




*This is the probability density function for the standard normal




Using Table of ¢

e
. .ps { '
Standard Normal Cumulative Probability Table |\
)‘; i
— /
®(1.31) = 0.9049 A
y
y .
Cumulative probabilities for POSITIVE z-values are shown in the following table: — L T
z | 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 ﬁ 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319




Symmetry of Phi

*This is the probability density function for the standard normal




Interval of Phi

P(c < Z <d) = ¢(d) — ¢(c)




Compute F(x) via Transform

Let X ~ N (p,07) 7 —

Use Z to compute F(x)

Fyx(z) = P(X < )

=P(X —p<z—p)




For normal distribution,
F(x) is computed using
the phi transform.




And here we are
) CDF of Standard Normal: A function that has
N(/,L, O ) been solved for numerically
T — U
F(x)=®
\ o
The cumulative density
function (CDF) of any normal

Table of ®(Z) values in textbook, p. 201 and handout




Using the Ph1 Table

j.—""‘\\
. .y £
Standard Normal Cumulative Probability Table / \‘-\
£ h
— /
d(0.54) = 0.7054 ,f-
y
/}/
Cumulative probabilities for POSITIVE z-values are shown in the following table: — T
z | 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319




Do We Have To Use The Table??




Table 1s kinda old school




We Are Computer Scientists!

Every modern programming language has phi stored in a library:

from scipy import stats

= P(X < z) where X ~ N (u,0%)

stats.norm.cdf (x, mean, std)




We Are Computer Scientists!

Every modern programming language has phi stored in a library:

from scipy import stats

= P(X < z) where X ~ N (u,0%)

stats.norm.cdf (x, mean,| std)

hot variancelll




We Made One For You

® ® M Calculators X + v

< —-> C (O @& chrispiech.github.io/probabilityForComputerScientists/en/intro/calculators/ a M % * s BE O » = @
C J

.l Phi Calculator, ®(z)

Course Reader for X 0.7

CS109

®_ Search book...

Notation Reference

Random Variable Reference

Inverse Phi Calculator, & *(y)

0.
Part 1: Core Probability Y !

Counting ) ;
. ; ; inverse phi(y)
Combinatorics

Definition of Probability
Equally Likely Outcomes

Probability of or
Conditional Probability

Norm CDF Calculator
Independence
Probability of and X 0.0
Law of Total Probability mu 0
Bayes' Theorem
std 1

Log Probabilities

Many Coin Flips
i el e norm.cdf(x, mu, std)

Enigma Machine




Practice: Submarine Manufacturing

Your team is tasked with producing the side
panels for Deep Sea Submarines. Physics
requires all panels to be built within 10 micros
of 500. You check how precise your
manufacturing is, and find these stats:

* Average panel thickness: u = 500 microns
 Variance of thickness: 6% = 36 microns?2

What fraction of the panels you manufacture will meet standards?
X~N(u =500,0°% = 36)

510
P(490 < X <510) = f(X =x)dx

490




Practice: Submarine Manufacturing If X~¥(,¢?), F(x) = @ (ﬂ)

o

Your team is tasked with producing the side
panels for Deep Sea Submarines. Physics
requires all panels to be built within 10 micros
of 500. You check how precise your U
manufacturing is, and find these stats: =

s
" .
r v rY Cx a [N /’/ 'K

* Average panel thickness: u = 500 microns ‘ - : |
* Variance of thickness: 6% = 36 microns? Now using the CDF!

What fraction of the panels you manufacture will meet standards?
X~N(u =500,0°% = 36)

P(490 < X <510) =7




Practice: Submarine Manufacturing If X~¥(,¢?), F(x) = @ (ﬂ)

o

Your team is tasked with producing the side
panels for Deep Sea Submarines. Physics
requires all panels to be built within 10 micros
of 500. You check how precise your
manufacturing is, and find these stats:

s
» ” .
v rY o, [N /’/ 'K

* Average panel thickness: u = 500 microns ‘ - : |
* Variance of thickness: 6% = 36 microns? Now using the CDF!

What fraction of the panels you manufacture will meet standards?
X~N(u =500,0°% = 36)

510 — 500 490 — 500
P(490 < X <510) =P(X <510) —P(X <490) = c — P c

subtract mean, divide by std. dev.{ 2

i




Practice: Submarine Manufacturing If X~¥(,¢?), F(x) = @ (ﬂ)

o

Your team is tasked with producing the side
panels for Deep Sea Submarines. Physics
requires all panels to be built within 10 micros
of 500. You check how precise your
manufacturing is, and find these stats:

s
» ” .
v rY o, [N /’/ 'K

* Average panel thickness: u = 500 microns ‘ - : |
* Variance of thickness: 6% = 36 microns? Now using the CDF!

What fraction of the panels you manufacture will meet standards?
X~N(u =500,0°% = 36)

510 — 500 490 — 500
P(490 < X <510) =P(X <510) —P(X <490) = c — P c

=c1>(§)—(1 —c1>(§)) =2 o(2) -1 ~0.904




Get your Gaussian On

Let X~N(u = 3,0°% = 16). Std deviationo = 4. + If X~N(u,0?), then

1. P(X>0) F(x) = @ (24)

2. P2<X<5) *  Symmetry of the PDF of
Normal RV implies

3. P(|X-3|>6) O(—x) = 1 — b(x)







Are you ready for something different?



Pop quiz!
UK)



Midterm: Website Testing

A new website design is tested out on 1M users.

= Let X be the number of users whose time on the
site increases with the new design.

= The CEO will endorse the new design if X 2 501k.

VARIATION

What is P(CEO endorses change]| it has no effect)?




Midterm: Website Testing

A new website design is tested out on 1M users.

= Let X be the number of users whose time on the
site increases with the new design.

= The CEO will endorse the new design if X 2 501k.

What is P(CEO endorses change]| it has no effect)?

X ~ Bin(n = 10°%,p = 0.5)

6
10 105

P(X > 501000) = Y ( E_ )(015)1-(0'5)1{15_1-

1=501000
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A new website design is tested out on 1M users.

= Let X be the number of users whose time on the
site increases with the new design.

= The CEO will endorse the new design if X 2 501k.
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Midterm: Website Testing

A new website design is tested out on 1M users.

= Let X be the number of users whose time on the
site increases with the new design.

= The CEO will endorse the new design if X 2 501k.

What is P(CEO endorses change]| it has no effect)?

- _ 6 _ >>> math.comb(1000000,501000)
X ~ Bm(n =10 D = 05) ValueError: Exceeds the limit (4300 digits) for

& integer string conversion; use
10 1[]5 sys.set_int_max_str_digits() to increase the limit

P(X >501000) = ) ( E_ )(0.5)*’(0.5)1“5—*' >>>

1=501000
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Poisson Approximates Binomial, With Extreme n and p
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Midterm: Website Testing

A new website design is tested out on 1M users.

= Let X be the number of users whose time on the
site increases with the new design.

= The CEO will endorse the new design if X 2 501k.

What is P(CEO endorses change]| it has no effect)?

X ~ Bin(n = 10° p = 0.5) P(X > 501000) ~ P(Y > 501000)
Y ~ N(p = 500000, 0% = 250000) ~ 1— P(Y < 501000)
0t np—p) ~ 1 — Fy(501000) ~ 0.02275

~\ Correct answer is 0.02270
v 0




Normal Approximation (with continuity correction)

In our website testing, Y ~N (50, 25) approximates X~Bin(100,0.5).

0.09
0.08
0.07
20.06
?0.05
2.0.04

EABin(100, 0.5)

—Normal

=.0.03

0.02

0.01

0.00
30 40

50 60

P(X = 65) Binomial
~ P(Y > 645) Normal
~ 0.0018

222 z}/%é c Bin(lOO, 0.5)
22: % — Normal(50, 25)
%
%

64 65 66

You must perform a continuity correction when

approximating a Binomial RV with a Normal RV: :

Ct ey
Oy




Continuity correction

IfY~N (np,np(1 — p)) approximates X ~Bin(n, p), how do we approximate

the following probabilities?

Discrete (e.g., Binomial)
probability question

Continuous (Normal)
probability question

P(X =6)
P(X = 6)
P(X > 6)
P(X <6)
P(X <6)

@ Bin(100, 0.5)
— Normal(50, 25)

567




Continuity correction

IfY~N (np,np(1 — p)) approximates X~Bin(n, p), how do we approximate
the following probabilities?

Discrete (e.g., Binomial) Continuous (Normal)
probability question probability question
P(X =6) P(55<Y<6.5)
P(X = 6) P(Y > 5.5)
P(X > 6) P(Y = 6.5)
P(X < 6) P(Y <5.5)

P(X < 6) P(Y < 6.5)




Midterm: Website Testing

A new website design is tested out on 1M users.

= Let X be the number of users whose time on the
site increases with the new design.

= The CEO will endorse the new design if X 2 501k.

What is P(CEO endorses change]| it has no effect)?

X ~ Bin(n = 10°,p = 0.5) P(X > 501000) ~ P(Y > 501000.5)
Y ~ N(u = 500000, 0* = 250000) ~1— P(Y <501000.5)
n g‘ n-p 7(1 —p) ~ 1 — Fy(501000.5) ~ 0.02270

YOU ARE AMAZING!
/

A\




Two Ways To Approximate The Binomial

X~Bin(n, p)
E[X] =np
n>20 Var(X) = np(1 — p) n>20
p<0.05 Var(X) > 10
A=np u=np
0% =np(1 - p)

Poisson approximation for big n, small p.

Normal approximation for big n, medium p.
Piech & Cain, CS109, Stanford University



Just Invented the Normal
Approximation



Stanford Admissions (a while back)

Stanford accepts 2480 students.
* Each admitted student matriculates w.p. 0.68 (independent trials)

 Let X = # of students who will attend

What is P(X > 1745)? Give a numerical approximation.
Strategy: A. Just Binomial
B. Poisson
C. Normal
D. None/other




Stanford Admissions

Stanford accepts 2480 students.
* Each admitted student matriculates w.p. 0.68 (independent trials)

* Let X = # of students who will attend
What is P(X > 1745)? Give a numerical approximation.

Strategy: A. Just Binomial not an approximation (also computationally expensive)
. Poisson p = 0.68, not small enough
Normal BdVariance np(1 — p) = 540 > 10
. None/other
Define an approximation Solve SciPy can do this

Let Y~ (E[X], Var(X)) P(Y > 1745.5) =1 —6(1745.53‘
E[X] = np = 1686 1745.5 — 1686
Var(X) = np(1 —p) = 540 - 0 = 23.3 23.3

P(X > 1745) =~ P(Y = 1745.5) A\ “ontnuty =1 — ®(2.54) =~ 0.0055

correction




Pedagogical Pause



Great questions!
Great thinkers start with great
guestions. Ask away!!!



Super Question:



WHY
BE

Why Be Normal? 68% rule

You may have heard the statement:
“68% of the class will fall within 1 standard deviation of the exam average.”

NORMAL?

In general, this 1s only true of normal distributions:

Let X~V (u, o) with CDF F.

P(| X —ul<o)=P(u—oc< X< u+o)
=F(u+o)—F(u—o)

=¢((u+0)—u)_¢<(u—0)—u>
o 0}

=d(1) - d(-1) = @(1) — (1 - c1>(1))
=20(1) -1 ~2(0.8413) —1=0. 6826

0.03 -

0.02 ~

0.01 -




Why Be Normal? 68% rule WHY

NORMAL?

You may have heard the statement:
“68% of the class will fall within 1 standard deviation of the exam average.”
In general, this 1s only true of normal distributions:

Counterexample: Let X~Uni(a, ).

f(x)
. P(| X —ul<o)=P(u—oc< X< u+o)
— 1
e == [t o) ~(u=o)]
X
« b 1 201 1 lz
f— O-: .

u=E[X]=aJ2rﬁ B—a L —«

(B — a)? B—a = 2/V12 ~ 0.58
Var(X) = D g:s.[)()():ﬁ /




Challenge
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Enough Servers?

You receive R ~ N(u = 10° 0 = 10%) requests in the busiest min

You are going to buy n servers
Each server can handle 10,000 requests per min, otherwise you drop requests

What 1s the smallest value of n such that P(drop) < 0.0001

10* - n — 10°
P(enough) > 0.9999 ;104 > ¢71(0.9999)
P(R < 10* - n) > 0.9999 ) 6
10 105 10* - n — 10 S 379
o( =) > 0.9999 10 |
10 6 104
10° 4+ 3.72- 10

104 - n — 10 n >
fm > ¢~1(0.9999) 104
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