Q1 Independence
2 Points
Suppose we roll two N-sided die yielding values D_1, D_2. Let event E: $D_1 = 1$, event F: $D_2 = N$. event G: $D_1 + D_2 = k$. Suppose we know E, F, and G are pairwise independent (i.e., E and F are independent; F and G are independent and E and G are independent. Suppose further that E, F, and G are not three-way independent. What is k?

- N
- 7
- $N + 1$
- $2N$
- 1
- 10
- N^2

Q2 Principle of Inclusion and Exclusion
1 Point
Define: Principle of Inclusion and Exclusion for two events, E and F. Note that these events are not necessarily independent.

- $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
- $P(E \cup F) = P(E)P(F)$
- $P(E \cup F) = P(E) + P(F)$

Q3 Chain Rule
2 Points
Let E, F, and G be events with nonzero probabilities.

Q3.1
1 Point
What is an equivalent expression for $P(EGF)$?

- $P(F|EG)P(G|EF)P(E|FG)$
- $P(F|E)P(G|E)P(E|FG)$
- $P(F)P(G|F)P(E|FG)$
- $P(F)P(G)P(E|FG)$
- $P(E)P(F)P(G)$

Q3.2
1 Point
Suppose that F and G are independent. Using the property of independence, what is an equivalent expression for $P(EGF)$?

- $P(F|EG)P(G|EF)P(E|FG)$
- $P(F|E)P(G|E)P(E|FG)$
- $P(F)P(G|F)P(E|FG)$
- $P(F)P(G)P(E|FG)$
- $P(E)P(F)P(G)$