1 Lecture 11, 4-29-20: Joint Distributions

1. Given a Normal RV \(X \sim N(\mu, \sigma^2) \), how can we compute \(P(X \leq x) \) from the standard Normal distribution \(Z \) with CDF \(\phi \)?

2. What is a continuity correction and when should we use it?

3. If we have a joint PMF for discrete random variables \(p_{X,Y}(x, y) \), how can we compute the marginal PMF \(p_X(x) \)?

 1. First, we write \(\phi((x - \mu)/\sigma) \). We then look up the value we’ve computed in the Standard Normal Table.

 2. Continuity correction is used when a Normal distribution is used to approximate a Binomial. Since a Normal is continuous and Binomial is discrete, we have to use a continuity correction to discretize the Normal. The continuity correction makes it so that the normal variable is evaluated from + or - 0.5 increments from the desired \(k \) value.

 3. The marginal distribution is \(p_X(x) = \sum_y p_{X,Y}(x, y) \)

2 Lecture 12, 5-1-20: Independent Random Variables

1. What distribution does the sum of two independent binomial RVs \(X + Y \) have, where \(X \sim Bin(n_1, p) \) and \(Y \sim Bin(n_2, p) \)? Include the parameter(s) in your answer. Why is this the case?

2. What distribution does the is of two independent Poisson RVs \(X + Y \) have, where \(X \sim Poi(\lambda_1) \) and \(Y \sim Poi(\lambda_2) \)? Include the parameter(s) in your answer.

3. If \(Cov(X, Y) = 0 \), are \(X \) and \(Y \) independent? Why or why not?

 1. Binomial; \(X + Y \sim Bin(n_1 + n_2, p) \)

 2. Poisson; \(X + Y \sim Poi(\lambda_1 + \lambda_2) \)

 3. Not necessarily. Suppose there are three outcomes for \(X \): let \(X \) take on values in \(\{-1, 0, 1\} \) with equal probability \(1/3 \). Let \(Y = X^2 \). Then, \(E[XY] = E[X^3] = E[X] = 0 \) (since \(X^3 = X \)) and \(E[X] = 0 \), so \(Cov(X, Y) = E[XY] - E[X]E[Y] = 0 - 0 = 0 \) but \(X \) and \(Y \) are dependent since \(P(Y = 1) = 2/3 \neq 1 = P(Y = 1|X = 1) \).

3 Lecture 13, 5-13-20: Joint Random Variables Statistics

1. True or False? The symbol \(Cov \) is covariance, and the symbol \(\rho \) is Pearson correlation.

 \[
 \begin{array}{c|c|c}
 X \perp Y & Cov(X, Y) = 0 & Var(X + X) = 2Var(X) \\
 \hline
 Cov(X, Y) = 0 & \Rightarrow X \perp Y & X \sim N(0, 1) \land Y \sim N(0, 1) \Rightarrow \rho(X, Y) = 1 \\
 \hline
 Y = X^2 & \rho(X, Y) = 1 & Y = 3X \Rightarrow \rho(X, Y) = 3
 \end{array}
 \]
1. **True or False?**

<table>
<thead>
<tr>
<th>True</th>
<th>False (... = (4\text{Var}(X)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>False (antecedent necessary, not sufficient)</td>
<td>False (don’t know how independent (X) & (Y) are)</td>
</tr>
<tr>
<td>False ((Y = X \implies \ldots))</td>
<td>False (... = 1)</td>
</tr>
</tbody>
</table>