1. **Random Number of Random Variables**: *law of total expectation*

Let N be a non-negative integer-valued random variable; that is, takes values in $\{0, 1, 2, \ldots\}$. Let X_1, X_2, X_3, \ldots be an infinite sequence of iid random variables (independent of N), each with mean μ, and $X = \sum_{i=1}^{N} X_i$ be the sum of the first N of them. Before doing any work, what do you think $E[X]$ will turn out to be? Show it mathematically.

\[
E[X] = E \left[\sum_{i=1}^{N} X_i \right] = \sum_{n} E \left[\sum_{i=1}^{N} X_i \mid N = n \right] p_N(n) = \sum_{n} E \left[\sum_{i=1}^{n} X_i \mid N = n \right] p_N(n) \\
= \sum_{n} E \left[\sum_{i=1}^{n} X_i \right] p_N(n) = \sum_{n} n \mu p_N(n) = \mu \sum_{n} n p_N(n) = \mu E[N]
\]

Alternatively,

\[
E[X] = E[E[X|N]] = E[N\mu] = \mu E[N]
\]

2. **Beta Sum**: *beta distribution and sum of RVs*

What is the distribution of the sum of 100 IID Betas? Let X be the sum

\[
X = \sum_{i=1}^{100} X_i \quad \text{where each } X_i \sim \text{Beta}(a = 3, b = 4)
\]

Note the variance of a Beta:

\[
\text{Var}(X_i) = \frac{ab}{(a+b)^2(a+b+1)} \quad \text{where } X_i \sim \text{Beta}(a, b)
\]

By the Central Limit Theorem, the sum of equally weighted IID random variables will be Normally distributed. We calculate the expectation and variance of X_i using the beta
formulas:

\[
E(X_i) = \frac{a}{a + b} \quad \text{Expectation of a Beta}
\]

\[
= \frac{3}{7} \approx 0.43
\]

\[
\text{Var}(X_i) = \frac{ab}{(a + b)^2(a + b + 1)} \quad \text{Variance of a Beta}
\]

\[
= \frac{3 \cdot 4}{(3 + 4)^2(3 + 4 + 1)}
\]

\[
= \frac{12}{49 \cdot 8} \approx 0.03
\]

\[
X \sim N(\mu = n \cdot E[X_i], \sigma^2 = n \cdot \text{Var}(X_i))
\]

\[
\sim N(\mu = 43, \sigma^2 = 3)
\]

3. Medicine Doses:

Megha has a health condition that requires unpredictable amounts of medication. Every day, there is a 20% chance that she feels perfectly fine and requires no medicine. Otherwise, she needs to take a dose of medication. The necessary dose is equally likely to be any value in the continuous range 1 to 5 ounces. How much medicine she needs on any given day is independent of all other days.

Megha’s insurance will fully cover 90 ounces of medicine for each 30-day period. What is the probability that 90 ounces will be enough for the next 30 days? Make your life easier by using Central Limit Theorem.

Let \(M \) be the amount of medicine Megha will need in the next thirty days. Let \(M_i \) be the amount of medicine Megha needs on the \(i \)th day. \(M \) is a sum of \(M_1 \) through \(M_{30} \) and can be modeled with the CLT.

To use the CLT, we need to first know the mean and variance of \(M_i \). To do this, let \(D_i \) be the event that she needs to take a dose on the \(i \)th day. Note that \(M_i | D_i \sim Uni(1, 5) \) and \(M_i | D_i^C = 0 \). Using the law of total expectation, we have:

\[
E[M_i] = E[M_i | D_i]P(D_i) + E[M_i | D_i^C]P(D_i^C) = 3 \cdot 0.8 + 0 \cdot 0.2 = 2.4
\]

To find the variance of \(M_i \), we need to know \(E[M_i^2] \). We can use a similar approach as the previous problem along with the law of the unconscious statistician.
\[
E[M_i^2] = E[M_i^2|D_i]P(D_i) + E[M_i^2|D_i^C]P(D_i^C) \\
= \frac{4}{5} \int_{m=1}^{5} m^2 f_M(m) dm + 0 \cdot .2 \\
= \frac{4}{5} \int_{m=1}^{5} m^2 \frac{1}{4} dt \approx 8.267
\]

We then have \(\text{Var}(M_i) = E[M_i^2] - E[M_i]^2 = 8.267 - 2.4^2 = 2.507 \). According to the CLT:
\[
\sum_{i=1}^{30} M_i \approx N(30 \times 2.4, 30 \times 2.507) \implies M \sim N(72, 75.21) P(M < 90) \approx \Phi \left(\frac{90 - 72}{\sqrt{75.21}} \right) \approx 0.98
\]