## Section 3: Named Random Variables

Before you leave lab, make sure you click here so that you're marked as having attended. The CA leading your discussion section can enter the password needed once you've submitted.

## 1 Gender Composition of Discussion Sections

A massive online Stanford class has sections with 10 students each. Each student in our population has a $50 \%$ chance of identifying as female, $47 \%$ chance of identifying as male and $3 \%$ chance of identifying as non-binary. Even though students are assigned randomly to sections, a few sections end up having a very uneven distribution just by chance. You should assume that the population of students is so large that the percentages of students who identify as male / female / non-binary are unchanged, even if you select students without replacement.
a. Define a random variable for the number of people in a section who identify as male.
b. What is the expectation and standard deviation of number of students who identify as male in a single section?
c. Write an expression for the exact probability that a section is skewed. We defined skewed to be that the section has $0,1,9$ or 10 people who identify as male.
d. The course has 1,200 sections. Approximate the probability that 30 or more sections will be skewed.

## 2 Better Evaluation of Eye Disease

When a patient has eye inflammation, eye doctors "grade" the inflammation. When "grading" inflammation they randomly look at a single 1 millimeter by 1 millimeter square in the patient's eye and count how many "cells" they see.

There is uncertainty in these counts. If the true average number of cells for a given patient's eye is 6 , the doctor could get a different count (say 4 , or 5 , or 7 ) just by chance. As of 2021, modern eye medicine does not have a sense of uncertainty for their inflammation grades! In this problem we are going to change that. At the same time we are going to learn about poisson distributions over space.
a. Explain, as if teaching, why the number of cells observed in a $1 x 1$ square is governed by a poisson process. Make sure to explain how a binomial distribution could approximate the count of cells. Explain what $\lambda$ means in this context. Note: for a given person's eye, the presence of a cell in a location is independent of the presence of a cell in another location.
b. For a given patient the true average rate of cells is 5 cells per 1 x 1 sample. What is the probability that in a single $1 \times 1$ sample the doctor counts 4 cells?


Figure 1: A lxlmm sample used for inflammation grading. Inflammation is graded by counting cells in a randomly chosen lmm by 1mm square. This sample has 5 cells.

## 3 Continuous Random Variables

Let $X$ be a continuous random variable with the following probability density function:

$$
f_{X}(x)= \begin{cases}c\left(e^{x-1}+e^{-x}\right) & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Find the value of $c$ that makes $f_{X}$ a valid probability distribution.
b. What is $P(X<0.75)$ ? What is $P(X<x)$ ?

## 4 Website Visits

You have a website where only one visitor can be on the site at a time, but there is an infinite queue of visitors, so that immediately after a visitor leaves, a new visitor will come onto the website. On average, visitors leave your website after 5 minutes. Assume that the length of stay is exponentially distributed. We will calculate what is the probability that a user stays more than 10 minutes.
a. Using the random variable $X$ defined as above, what is the probability that a user stays longer than 10 mins? (i.e, $X>10$ ).
b. Using the random variable $Y$, defined as the number of users who leave your website over a 10 -minute interval, what is the probability that a user stays longer than 10 mins?

