Section #6: Samples Solution

1. Warmup:
 - Population variance, σ^2: The true variance of a population (or random variable).
 - Sample variance, S^2: the unbiased estimate of the true variance based on an independent subsample.
 - Variance of sample mean, $\text{Var}(\bar{X})$: How much spread there is in the estimation of the true mean.

2. Binary Tree:
 Let X_1 and X_2 be number of nodes the left and right calls to `randomTree`
 $E[X_1] = E[X_2] = E[X]$.
 \[
 E[X] = p \cdot E[X \mid \text{if}] + (1 - p)E[X \mid \text{else}]
 = p \cdot E[1 + X_1 + X_2] + (1 - p) \cdot 0
 = p \cdot (1 + E[X] + E[X])
 = p + 2pE[X]
 \]
 \[
 (1 - 2p)E[X] = p
 \]
 \[
 E[X] = \frac{p}{1 - 2p}
 \]

3. Beta Sum:
 By the Central Limit Theorem, the sum of equally weighted IID random variables will be Normally distributed. First, we calculate the expectation and variance of X_i using the beta formulas:
 \[
 E(X_i) = \frac{a}{a + b}
 \]
 \[
 = \frac{3}{7} \approx 0.43
 \]
 \[
 \text{Var}(X_i) = \frac{ab}{(a + b)^2(a + b + 1)}
 \]
 \[
 = \frac{3 \cdot 4}{(3 + 4)^2(3 + 4 + 1)}
 \]
 \[
 = \frac{12}{49 \cdot 8} \approx 0.03
 \]
 \[
 X \sim N(\mu = n \cdot E[X_i], \sigma^2 = n \cdot \text{Var}(X_i))
 \]
 \[
 \sim N(\mu = 100 \cdot 0.43, \sigma^2 = 100 \cdot 0.03)
 \]
 \[
 \sim N(\mu = 43, \sigma^2 = 3)
 \]
4. Variance of Height among Island Corgis:

```python
def bootstrap(pop1, pop2):
    # make the universal population
    totalPop = copy.deepcopy(pop1)
    totalPop.extend(pop2)

    # Run a bootstrap experiment
    countDiffGreaterThanObserved = 0
    print('starting bootstrap'
    for i in range(50000):
        # resample and recalculate the statistic
        sample1 = resample(totalPop, len(pop1))
        sample2 = resample(totalPop, len(pop2))
        sampleStat1 = calcSampleVariance(sample1)
        sampleStat2 = calcSampleVariance(sample2)
        diff = abs(sampleStat2 - sampleStat1)

        # count how many times the statistic is more extreme
        if diff >= 3:
            countDiffGreaterThanObserved += 1

    # compute the p-value
    p = float(countDiffGreaterThanObserved) / 50000
    print('p-value:', p)
```

For this data, the two-tailed (e.g. using absolute value) test returns a null hypothesis probability \(p = 0.12 \). There is a pretty decent chance that the observed difference in sample variance was random chance -- and it doesn’t fall under what scientists often call “statistically significant.” Here is a histogram of all the diff values from the bootstrap experiment: