1. **Run a Tensor Flow Algorithm**

 See the Python notebook solutions in section or online!

2. **Deep Dream**

 a. Loop over all images, run them through your deep learning network, and select the one for which the activation of the final neuron is the largest.

 b. Note that: \(h_2 = \sigma(\sum_{i=0}^{64} \theta_i z_i) \). We are going to use gradient ascent to choose pixel values \(\mathbf{x} \) that maximize the activation of the neuron \(h_2 \)!

 \[
 \arg \max_{\mathbf{x}} h_2 = \arg \max_{\mathbf{x}} \sigma(\sum_{i=0}^{64} \theta_{i,2} x_i)
 \]

 Which requires us to solve for the derivative of \(h_2 \) with respect to each pixel \(x_i \).

 \[
 \frac{\partial h_2}{\partial x_i} = \frac{\partial \sigma(z)}{\partial z} \cdot \frac{\partial z}{\partial x_i}
 \]

 \[
 = \sigma(z)[1 - \sigma(z)] \cdot \frac{\partial z}{\partial x_i}
 \]

 \[
 = h_2[1 - h_2] \cdot \theta_i
 \]

 That’s all folks!

 c. The approach is basically the same as in part (b), but we start with the pixels \(\mathbf{x} \) set to the input picture’s pixel values. We then optimize for the output of \(Y = 1 \), the cat neuron (using the same methodology of derivatives as above, but with respect to the final neuron instead of \(h_2 \)). Finally, we only run a few iterations of gradient descent (so that the image is only slightly more catlike, as requested).