Introduce yourself to the class! 👋

https://padlet.com/reberhardt7pad/cs110map

Click here 😊
Welcome to CS 110 👋

Ryan Eberhardt
June 21, 2021
Today’s lecture:
Today’s lecture: a boring sandwich

CS 110: Principles of Computer Systems

Principles and practice of engineering of computer software and hardware systems. Topics include: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities. Prerequisite: 107.

Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci

Instructors: Cain, J. (PI); Cyrus, R. (PI); Eberhardt, R. (PI) ... [more instructors for CS 110](#)

Schedule for CS 110
Today’s lecture: a boring sandwich 🥪

- Interesting: What the heck is “systems” anyways?
- Boring: How is this class going to work?
- Interesting: What are filesystems, and how do they work?
What the heck is “systems” anyways?
Computer systems

- “Computer systems” is so broad and vague that it seems it could refer to anything involving computers
- I view systems as being about building the platform that all application software stands on
Computer systems

- “Computer systems” is so broad and vague that it seems it could refer to anything involving computers
- I view systems as being about building the platform that all application software stands on
- Systems people are the carpenters, masons, electricians, and also the architects and civil engineers
 - You’re designing a solution around high-level goals and tradeoffs
 - You’re also getting your hands dirty building it, fixing problems, etc
DDoS Attacks

DDoS attack evolution

Annual volume peaks

DDoS Attacks

Peak Attack Sizes Through March 2018

1,700 Gbps!!

2015 :-/

Cloudflare

133 datacenters

https://blog.cloudflare.com/usa-expansion/
Cloudflare

133 datacenters
Cloudflare

Without CloudFlare

Visitor

Crawlers and bots

Your naked website

Attackers

Slow pipes

With CloudFlare

Visitor

Crawlers and bots

CloudFlare's globally distributed network

Cloudflare protected website

Fast pipes

Attackers

https://support.cloudflare.com/hc/en-us/articles/205177068-Step-1-How-does-Cloudflare-work-
Disney: Large-scale rendering

Without global illumination:

https://www.disneyanimation.com/technology/innovations/hyperion
Disney: Large-scale rendering

With global illumination:

https://www.disneyanimation.com/technology/innovations/hyperion
Disney: Large-scale rendering

Without global illumination:
Disney: Large-scale rendering

With global illumination:

https://www.disneyanimation.com/technology/innovations/hyperion
Disney: Large-scale rendering

- “San Fransokyo” contains 83,000 buildings, 260,000 trees, 215,000 streetlights, and 100,000 vehicles. City detail is based on assessor data from San Francisco
- Rendered in four geographically-distributed datacenters
- 55,000 CPU cores, 400 TB of memory
- Many system failures!
Google Chrome: More complex than you think!

● The modern browser is basically an operating system

● You can do almost anything in a browser:
 ○ Music synthesis, hardware MIDI interfaces: https://musiclab.chromeexperiments.com/
 ○ Render high quality graphics + physics simulations in real time: http://madebyevan.com/webgl-water/
 ○ Run Windows 95: https://win95.ajf.me/

● Security and isolation between sites is essential
 ○ A shady website you stumble upon should never have access to your email, bank, etc.
Google Chrome: More complex than you think!
Google Chrome: More complex than you think!
Today’s lecture: a boring sandwich 🥪

- Interesting: What the heck is “systems” anyways?
- Boring: How is this class going to work?
- Interesting: What are filesystems, and how do they work?
CS 110: Principles of Computer Systems
Hello world! 👋

- I just graduated the coterm, focused on systems and security
- I was a community college graduate and transfer student
- I have two cats
- I love doing pottery, photography, and listening to music
Hello world! 👋

Sophie Patrick Ayelet Thea
Course website

- cs110.stanford.edu
- All course info, assignments, links, etc will be posted here
Lecture format

- Outside of lecture, you’ll have plenty of practice with the “what” of systems programming; in lecture, we want to focus on the “why”
 - Going to be discussion-oriented as much as possible
- Lecture is synchronous — please come ready to participate!!
 - Pretty please :)
 - I’ll come up with some creative incentives, e.g. I’ll make you a mug
- Lecture is M/W/F week 1, only M/W after that
Edstem and Slack

- We’ll be using Ed for the Q&A forum
- We’ll be using Slack as a social forum, as well as group chat for your discussion section
- Links on the course website!
The art of debugging
The art of debugging

- Let’s imagine we have a hypothetical “fancy water gadget”
The art of debugging

- Say we’re supposed to pour water in on one end and get water out the other end.
The art of debugging

- Say we’re supposed to pour water in on one end and get water out the other end
- But maybe this doesn’t work, and water leaks instead
- What do you do?
- Beginner debugging strategies:
 - Stare at it until you figure it out
 - Mess with it until it works
The art of debugging

- There are two critical pieces to debugging effectively:
 - Develop a mental model of how things are supposed to work
 - Figure out what is happening instead
The art of debugging

1. Develop a mental model of how things are supposed to work
 - Read documentation
 - Read Stack Overflow
 - Talk to people
 - Try experiments
The art of debugging

- #2: Figure out what is happening *instead*
 - Somehow need to get more visibility into the system
 - E.g. add print statements, use gdb, try other tools we’ll discuss
The art of debugging

- #2: Figure out what is happening *instead*
 - Somehow need to get more visibility into the system
 - E.g. add print statements, use gdb, try other tools we’ll discuss
The art of debugging

#2: Figure out what is happening *instead*
- Somehow need to get more visibility into the system
- E.g. add print statements, use gdb, try other tools we’ll discuss
Office hours

● Unlike previous classes, we will not look at code in office hours
 ○ One exception: if you’re getting tripped up by syntax / compiler errors
● Our goal is to teach you how to debug your code, not to debug it for you
 ○ We will help make sure you have the right mental model of what is supposed to be happening
 ○ We will give you suggestions to get more visibility into what is actually happening
● We also want to encourage you to program carefully! Systems programming requires attention to detail
Grading

- Concept checks: 10%
- Discussion section participation: 10%
 - Sections don’t start until week 2
- Programming assignments: 60%
- Self assessments: 20%
Late policy

- Life happens! Especially in these times
- We cap scores based on lateness:
 - On time: you get up to 100%!
 - Up to 24 hours late: 90% cap
 - 24-48 hours late: 70% cap
 - After 48 hours: please let us know what’s up and how we can help
- I will grant extensions on a case-by-case basis. Please email me *in advance*
Honor code

- I will be relatively generous with deadlines…
- …but I will not be very generous with honor code violations.
- There exist assignment solutions on the internet
 - We’ve been playing whack-a-mole taking these down, but it’s not easy
- Lucky for us, these solutions have very subtle and unique mistakes
- 2 minute video from Brian Harvey on why you shouldn’t cheat: https://www.youtube.com/watch?v=hMloyp6NI4E
 - Best case scenario, “you condemn yourself to a life of doing something you don’t know how to do and don’t like doing.”
- Please do not be tempted to cheat! It is not worth it! We are here to support you
Filesystems
Considerations in filesystems

- A filesystem stores persistent data on some storage medium (e.g. hard drive)
- What are some things we might want from a filesystem?
 - Fast read/write performance
 - Low storage overhead (if I have a 1TB drive, I want to be able to store 1TB of files)
 - Resilient against data loss/corruption
 - Fancy features: encryption, compression, snapshots, etc.
 - Low complexity, easy to implement without bugs!!!
(live discussion)