
Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

CS123 - Communication
Programming Your Personal Robot

Kyong-Sok “KC” Chang, David Zhu
Fall 2015-16

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Course Description
An introduction to the programming of a sensor-rich personal robot.
This course extends programming from the virtual environment into
the physical world, which presents unique challenges. Focus is on
three areas of intellectual discourse that are fundamental to the
programming of physical devices: communication with the devices;
programming of event driven behaviors; and reasoning with
uncertainty. The concepts introduced will be put into practical use
through a series of class projects centered around programming
your personal robot. This course also serves as a good introduction
to Experimental Robotics by exposing students to basic concepts
and techniques that are relevant for real world robot programming.

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Course Structure
• Lectures

• Cover basic concepts
• Readings

• Provide background and deeper knowledge on relevant topics
• Projects

• Hands-on experience, learning by doing
• “Freestyle”

• Going beyond class material on your own. Hamster is an open
platform

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Syllabus
• Part 1 - Communicating with robot (2 weeks)

• BLE communication and robot API
• Part 2 - Event Driven Behavior (2 weeks)

• Finite State Machine (Behavior Tree)
• Part 3 - Reasoning with Uncertainty (2 weeks)

• Dealing with noisy data, uncertainty in sensing and control
• Part 4 - Extending the robot (1 weeks)

• I/O extensions: digital, analog, servo, pwm, etc
• Part 5 – Putting it together (including UI/UX) (3 weeks)

• Design and implement of final (group) project
• Encourage you to go “above and beyond”

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Grading
• This class will be project base only

• No exam ☺
• There will be 4 individual projects and 1 team (final) project

• Project #1 (Communication) – 20%
• 2 weeks

• Project #2 (Finite State Machine) - 20%
• 2 weeks

• Project #3 (Uncertainty) - 20%
• 2 weeks

• Project #4 (Robot Extension) - 10%
• 1 week

• Project #5 (Final, Group project) - 30%
• 3 weeks
• Design your (team) project (need to get approval)

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Calendar

KC
Teaching

David
Teaching

Part 1

Part 2

Part 3

Part 4

Part 5

Part 5

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

About US
• Instructors

• Dr. Kyong-Sok “KC” Chang
• Dr. David Zhu

• TA
• Jocelyn Neff
• Kornel Niedziela

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Logistics
• Getting your own Hamster

• Sign-up sheet
• Programming environment

• Mac
• PC

• Website for the class
• TA sessions (office hours)

• Location
• Time

• Emails

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Outline
• BLE: Hamster test
• DRC: communication
• Robot communication protocol
• IoT communication protocol
• Bluetooth History / versions
• BLE Specifications
• BLE Protocol
• GAP: Generic Access Profile
• GATT: Generic Attribute Profile
• Assignment#1

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Robot with computer
or Computer with legs?

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

BLE: Reading

This week's(and future) reading for BLE.

“Getting started with Bluetooth Low Energy” by Townsend, Davidson & Akiba,
O’Reilly

https://www.safaribooksonline.com/library/view/getting-started-
with/9781491900550/cover.html

https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

BLE: Hamster
Generic Apps: connecting to Hamster
-- iPhone, iPad, Mac: LightBlue
-- Android: nRF Master Control Panel

Sensors: (UUID: 0x00009001...)
-- Read data (20 bytes) from Hamster.
(in hex)
1st byte: version/topology
2nd byte: network ID
3rd byte: command/security
4th byte: Signal Strength (-128~0)
5th byte: Left Proximity (0~255)
6th byte: Right Proximity (0~255)
7th byte: Left Floor (0~255)
8th byte: Right Floor (0~255)

Effectors: (UUID: 0x0000A0000...)
-- Write 11 bytes to Hamster.
<0000103232020300000040>
(in hex)
0x00: version/topology
0x00: network ID
0x10: command/security
0x32: left wheel speed (50: -100~100)
0x32: right wheel speed (50: -100~100)
0x02: left LED color (green: 0~7)
0x03: right LED color (blue: 0~7)
0x00: buzzer high
0x00: buzzer middle
0x00: buzzer low
0x40: musical note (C4: middle C: 0-88)

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

DRC: communication

ROS core

RPU & RCU

FCU

OCU

OCU1
rLab: operation
- rPanelDRC
- status monitor

FCU1

rLab: simulation

OCU2
- rVIZ for DRC
- PCD visualization
- display visualization

FCU2

RCU

rLab: control

RPU

- display res.: 640x480
win7/ msvc9 Win8 <for Kinect> /

msvc12

win7/ msvc9
win8/ msvc12

win7/ msvc9 linux/ROS Indigo

U
D

P

P
C

D
 /

di
sp

la
y

TC
P

re
co

gn
iti

on
 /

S
ta

tu
s

/ c
om

d
/ d

is
pl

ay
(L

Q
)

TC
P

 d
is

pl
ay

 /
se

ns
or

(L
id

ar
)

 /
co

m
m

an
d

TC
P

co
m

m
an

d
/ S

ta
tu

s

TCP

recognition /
display(LQ)

ROS msg.

command

Pilot Co-
Pilot

Robot operation
● Autonomous (AI)
● Semi-autonomous
● Tele-operation

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Robot Communication Protocol
• RS232

• cheapest (many PCs have serial port)
• 115.2 kbps

• CANopen (CAN)
• many microcontrollers have built in CAN ports
• 1 Mbps
• error correction (collision detection/prevention)
• daisy-chain (128 nodes)

• RS485
• 32 nodes
• 921.6 kbps

• EtherCAT
• high-performance
• 200 Mbps
• based on Ethernet (no special Ethernet hardware)
• Multiple topologies possible: line, star, tree, daisy-chain
• Real-time down to the I/O level

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Robots: Bluetooth Smart Devices
(That Can Move)

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Bluetooth Smart Devices

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

IoT Communication Protocol

Ref.: Raj Jain, Washington University in St. Louis

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Bluetooth: History
• Bluetooth Low Energy (BLE, also marketed as Bluetooth Smart) started as part of the Bluetooth 4.0

Core Specification.
• Started with Ericsson's (Sweden) Bluetooth Project in 1994 for radio communication between cell

phones over short distances
• Named after Danish king Harald Blaatand (AD 940-981) who was fond of blueberries and had a

blue tooth
• Intel, IBM, Nokia, Toshiba, and Ericsson formed Bluetooth SIG (special interest group) in May 1998.

(Today it has membership of over 11,000 companies)
• Version 1.0A of the specification came out in late 1999.
• IEEE 802.15.1 approved in early 2002 is based on Bluetooth Later versions handled by Bluetooth

SIG directly
• Key Features:

• Lower Power: 10 μA in standby, 50 mA while transmitting
• Cheap: $5 per device
• Small: 9 mm2 single chips

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Bluetooth by Intel engineer Jim Kardach

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Bluetooth versions
• Bluetooth 1.0 and 1.0B (late 1999): too many problems
• Bluetooth 1.1: IEEE 802.15.1-2002. RSSI (received signal strength

indicator, WPAN (wireless personal area network)
• Bluetooth 1.2: IEEE 802.15.1-2005 (Nov 2003): 721 kbs
• Bluetooth 2.0 + Enhanced Data Rate (EDR) (Nov 2004): 3 Mbps
• Bluetooth 2.1 + EDR (July 2007): Secure Simple Pairing to speed up

pairing
• Bluetooth 3.0+ High Speed (HS) (April 2009): 24 Mbps using WiFi PHY +

Bluetooth PHY for lower rates
• Bluetooth 4.0 (June 2010): Low energy. 1 Mbps. Smaller devices requiring

longer battery life (several years). New incompatible PHY. Bluetooth Smart
Ready, Bluetooth Smart or BLE

• Bluetooth 4.1 (Dec 2013): 4.0 + Core Specification Amendments (CSA) 1,
2, 3, 4, current standard

• Bluetooth 4.2 (Dec 2014): 4.1 + flexible internet connectivity + power
efficiency + security + faster

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

BLE: specification
• Range: ~ 150 meters open field
• Output Power: ~ 10mW (10dBm)
• Max Current: ~ 15mA
• Latency: 3 ms
• Topology: Star
• Connections: > 2 billion
• Modulation: GFSK @ 2.4 GHz
• Robustness: Adaptive Frequency Hopping, 24 bit CRC
• Security: 128bit AES CCM
• Sleep current ~ 1µA
• Modes: Broadcast, Connection, Event Data Models Reads, Writes
• Data Throughput

• For Bluetooth low energy, data throughput is not a meaningful
parameter. It does not support streaming.

• It has a data rate of 1Mbps, but is not optimised for file transfer.
• It is designed for sending small chunks of data (exposing state).

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Bluetooth protocols

Configurations between Bluetooth versions and device types

Ref. “Getting started with Bluetooth Low Energy” by
Townsend, Davidson & Akiba, O’Reilly

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Bluetooth Smart Protocol Stack

Ref. Raj Jain, Washington University in St. Louis

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GAP
• Generic Access Profile (GAP)

• defines lower-level interactions with devices (lower-level radio protocols)
• broadcast, discover, establish connections, manage connections, negotiate security levels
• only one master per slave
• multiple slaves per master

• in theory: no limit
• in practice: up to 8 simultaneous connection

• Role: Master - Slave
• Master / Central

• the BLE device which initiates an outgoing connection request to an advertising peripheral
device

• Slave / Peripheral
• the BLE device which accepts an incoming connection request after advertising

• Role: Observer - Broadcaster (Non-connecting)

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Role: Central - Peripheral

Ref. “Getting started with Bluetooth Low Energy” by
Townsend, Davidson & Akiba, O’Reilly

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Role: Observer - Broadcaster

Ref. “Getting started with Bluetooth Low Energy” by
Townsend, Davidson & Akiba, O’Reilly

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GATT
• Generic Attribute Profile (GATT)

• how to exchange all profiles and user data over BLE
• deals with actual data transfer procedures and formats: discover, read, write, and push data

elements

• provides reference framework for GATT-based profiles
• SIG defined profiles
• Custom profiles
• uses Attribute Protocol (ATT) to exchange data between devices

• Role: Client - Server (independent of Master-Slave role)
• GATT client

• a device which accesses data on the remote GATT server via read, write, notify, or indicate
operations

• GATT server
• a device which stores data locally and provides data access methods to a remote GATT

client

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GATT
• UUIDs

• A universally unique identifier (UUID) is a 128-bit (16 bytes) number that is guaranteed (or has a
high probability) to be globally unique.

• two additional UUID formats: 16-bit and 32-bit UUIDs.
• Bluetooth SIG as standard Bluetooth UUIDs:
• To reconstruct the full 128-bit UUID from the shortened version
• xxxxxxxx-0000-1000-8000-00805F9B34FB
• Custom UUID (vendor-specific UUID): 128-bit UUID: generated using ITU’s UUID generation

page.
• Attributes

• Every characteristic has one main attribute which allows access to the actual value stored in the
database for that characteristic.

• A characteristic can have multiple attributes.
• Each attribute has a unique UUID.

• GATT server
• must implement the official Generic Access service (0x1800)
• Two mandatory characteristics: Device Name (0x2A00) and Appearance (0x2A04)
• Similar to Friendly Name and Class of Device values used by classic Bluetooth.

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://bit.ly/1kQOvDM
http://bit.ly/1kQOvDM
http://bit.ly/1kQOvDM
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.device_name.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GATT: Data Hierarchy
GATT server: Profile

Service

Characteristic

Descriptor

...

Characteristic

Descriptor
...
...

Descriptor

Characteristic

Descriptor
...

Service

...

...

GATT client

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GATT: Data Transfer Methods
GATT server: Profile

Service

Characteristic

Descriptor

...

Characteristic

Descriptor
...
...

Descriptor

Characteristic

Descriptor
...

Service

...

...

GATT client

read

write

notify

indicate

4 data operations
● read: requested by client on-demand
● write / write without response
● notify: no acknowledge
● indicate: acknowledged
● max data payload: 20 bytes

(22 bytes for read operation)

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GAP Profile: Hamster

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

GATT Profile: Hamster

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Ex) By calling
CBCentralManager::scanForPeripheralsWithServices_options_([Ads], None),
CBCentralMangerDelegate::
centralManager_didDiscoverPeripheral_advertisementData_RSSI_(self,
manager, peripheral, data, rssi)
will be called automatically.

Assignment#1-1

CBCentralManager

CBPeripheral CBPeripheralDelegate

CBCentralManagerDelegate

Automatically called
Event handler, Callback functions
User implemented

register

register

Event-driven programming

event

event

Explicitly called by user

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Assignment#1-1: Due 10/01/2015
Hints:
In OS X, CentralManager == host/client/computer, Peripheral == slave/server/device(Hamster).

File: "hamsterAPI_ref.py"
Look at the required methods for delegates and available class methods in "hamsterAPI_ref.py".
Notice that this file is not a correct python file. This file lists relevant APIs that you should use.
--You need to implement the methods for both CBCentralManagerDelegate and CBPeripheralDelegate protocols.
--And you need to use CBCentralManager class methods and CBPeripheral class methods in delegate methods.
***** Note: this is event driven programming such that once you call the CentralManager class methods or Peripheral class
methods, corresponding delegate methods are being called automatically.
Ex) By calling CBCentralManager::scanForPeripheralsWithServices_options_([Ads], None),
CBCentralMangerDelegate::centralManager_didDiscoverPeripheral_advertisementData_RSSI_(self, manager, peripheral,
data, rssi) will be called automatically.

Reference:
Mac OS X's Core Bluetooth Framework Reference
https://developer.apple.
com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.
html#//apple_ref/doc/uid/TP40011295
PyObjC that is a bridge between Python and Objective-C.
https://pythonhosted.org/pyobjc/core/intro.html

https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://pythonhosted.org/pyobjc/core/intro.html
https://pythonhosted.org/pyobjc/core/intro.html

Stanford University (cs123.stanford.edu) ©Kyong-Sok (KC) Chang & David Zhu

Reference
“Getting started with Bluetooth Low Energy” by Townsend, Davidson & Akiba, O’Reilly
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html

BLE master/slave, GATT client/server, and data RX/TX basics by Jeff Rowberg
https://bluegiga.zendesk.com/entries/25053373--REFERENCE-BLE-master-slave-GATT-client-server-
and-data-RX-TX-basics

https://developer.bluetooth.org/TechnologyOverview/Pages/Technology-Overview.aspx

http://www.cse.wustl.edu/~jain/cse574-14/ftp/j_11ble.pdf by Raj Jain

http://chapters.comsoc.org/vancouver/BTLER3.pdf

https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
https://developer.bluetooth.org/TechnologyOverview/Pages/Technology-Overview.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/Technology-Overview.aspx
http://www.cse.wustl.edu/~jain/cse574-14/ftp/j_11ble.pdf
http://www.cse.wustl.edu/~jain/cse574-14/ftp/j_11ble.pdf

