
Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

CS123 - BLE & API
Programming Your Personal Robot

Kyong-Sok “KC” Chang, David Zhu
Fall 2015-16

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Logistics
• Getting your own Hamster (and USB BLE dongle)

• Sign-up sheet
• Programming environment

• Mac: Assignment#1-1 and #1-2 (must)
• PC: only okay from Assignment#2 with USB BLE dongle

• Website for the class
• cs123.stanford.edu, piazza

• TA sessions (office hours): this week
• Location: Gates B21
• Time: M:2~4pm, Tu:6~8pm, W:12:30-2:30pm, Th:6:30~8:30pm

• Lab reserved for cs123
• MTuW, 12~6pm @ Gates B21

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Future: Telepresence Robots?

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Syllabus
• Part 1 - Communicating with robot (2 weeks)

• BLE communication and robot API
• Part 2 - Event Driven Behavior (2 weeks)

• Finite State Machine (Behavior Tree)
• Part 3 - Reasoning with Uncertainty (2 weeks)

• Dealing with noisy data, uncertainty in sensing and control
• Part 4 - Extending the robot (1 weeks)

• I/O extensions: digital, analog, servo, pwm, etc
• Part 5 – Putting it together (including UI/UX) (3 weeks)

• Design and implement of final (group) project
• Encourage you to go “above and beyond”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Outline
• BLE: Review - Core Bluetooth
• Delegation vs Protocol
• Assignment#1-1
• API: Definition
• Interface vs Implementation
• Naming Convention
• Robot API: Accessor vs Mutator
• Bytes and Bits
• Bitwise operators and masks
• Two’s complement
• Assignment#1-2

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

BLE: Core Bluetooth by Apple

Overview GATT Profile

Ref. Apple, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

BLE: Roles

Ref. Apple, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Central vs Peripheral Programming

Central(host) programming
-Core Bluetooth objects on the central
side
-Local centrals and remote peripherals

Peripheral(device) programming
-Core Bluetooth objects on the
peripheral side
-Local peripherals and remote
centrals

Ref. Apple, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Reconnection without scan

Ref. Apple, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Delegation: Acting on Behalf of Another Object
In delegation, an object called the delegate acts on behalf of, and at the request of, another object. That other, delegating, object is

typically a framework object. At some point in execution, it sends a message to its delegate; the message tells the delegate that some

event is about to happen and asks for some response. The delegate (usually an instance of a custom class) implements the method

invoked by the message and returns an appropriate value. Often that value is a Boolean value that tells the delegating object whether to

proceed with an action. The delegating object has to keep track of the delegate and call upon it when needed by sending it a message.

Protocol: Enabling Communication Between Objects Not Related by Inheritance
A protocol is a declaration of a programmatic interface whose methods any class can implement. A protocol is thus, as is delegation, an

alternative to subclassing and is often part of a framework’s implementation of delegation.

Delegation vs Protocol

Delegating
object Delegate

send message
protocols

answer

Ref. Apple, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Note) CBCentralManager::centralManagerDidUpdateState_(self, manager) will be called automatically at the start.
Ex) By calling CBCentralManager::scanForPeripheralsWithServices_options_([Ads], None),
CBCentralMangerDelegate::centralManager_didDiscoverPeripheral_advertisementData_RSSI_(self, manager,
peripheral, data, rssi) will be called automatically.
Ex) By calling CBPeripheral::peripheral.discoverServices_([Name, Info, Sensors, Effectors])
CBPeripheralDelegate::peripheral_didDiscoverServices_(self, peripheral, error) will be called automatically.

Assignment#1-1

CBCentralManager

CBPeripheral CBPeripheralDelegate

CBCentralManagerDelegate

Automatically called
Event handler, Callback functions
User implemented

register

register

Event-driven programming

event
mesg

event
mesg

Explicitly called by user
Perform actions, Send mesg to delegate
User uses APIs only

delegating object its delegate

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Role: Central - Peripheral

Ref. “Getting started with Bluetooth Low Energy” by
Townsend, Davidson & Akiba, O’Reilly

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

GATT: Data Transfer Methods
GATT server: Profile

Service

Characteristic

Descriptor

...

Characteristic

Descriptor
...
...

Descriptor

Characteristic

Descriptor
...

Service

...

...

GATT client

read

write

notify

indicate

4 data operations
● read: requested by client on-demand
● write / write without response
● notify: no acknowledge
● indicate: acknowledged
● max data payload: 20 bytes

(22 bytes for read operation)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Assignment#1-1: Due 10/01/2015
Hints:
In OS X, CentralManager == host/client/computer, Peripheral == slave/server/device(Hamster).

File: "hamsterAPI_ref.py"
Look at the required methods for delegates and available class methods in "hamsterAPI_ref.py".
Notice that this file is not a correct python file. This file lists relevant APIs that you should use.
--You need to implement the methods for both CBCentralManagerDelegate and CBPeripheralDelegate protocols.
--And you need to use CBCentralManager class methods and CBPeripheral class methods in delegate methods.
***** Note: this is event driven programming such that once you call the CentralManager class methods or Peripheral class
methods, corresponding delegate methods are being called automatically.
Ex) By calling CBCentralManager::scanForPeripheralsWithServices_options_([Ads], None),
CBCentralMangerDelegate::centralManager_didDiscoverPeripheral_advertisementData_RSSI_(self, manager, peripheral,
data, rssi) will be called automatically.

Reference:
Mac OS X's Core Bluetooth Framework Reference
https://developer.apple.
com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.
html#//apple_ref/doc/uid/TP40011295
PyObjC that is a bridge between Python and Objective-C.
https://pythonhosted.org/pyobjc/core/intro.html

https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://pythonhosted.org/pyobjc/core/intro.html
https://pythonhosted.org/pyobjc/core/intro.html

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What is an API?
API: Application Programming Interface.
Application
software that we use
Programming
process of creating software
Interface
a common tool that enables two applications or programs to communicate with one another

API Call
When specific information from an API is needed, a program needs to call that API (make an API call).

API: a way for programmers to communicate with class/library/application.

API class/library/
applicationProgrammer

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Interface vs Implementation
• API describes

• what a class/library/application does (interface of the class)
• not how a class does it (implementation of the class)
• Encapsulation: you have to implement API

• Interface
• ex) CBCentralManager, CBCentralManagerDelegate
• all we need to know to use a class
• how we interact with a class

• what methods to call
• what they will return

• Implementation
• ex) CBCentralManager: we don’t care
• ex) CBCentralManagerDelegate: we implement
• using specific solutions for the given problems

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Why is API Design Important?
• APIs can be among a company's greatest assets

Customers invest heavily: buying, writing, learning
Cost to stop using an API can be prohibitive
Successful public APIs capture customers

• Can also be among company's greatest liabilities
Bad APIs result in unending stream of support calls

• Public APIs are forever - one chance to get it right

Ref: “How to Design a Good API and Why it Matters”
by Joshua Bloch, Google, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Why is API Design Important to
You?
• If you program, you are an API designer

Good code is modular – each module has an API
• Useful modules tend to get reused

Once module has users, can’t change API at will
Good reusable modules are corporate assets

• Thinking in terms of APIs improves code quality

Ref: “How to Design a Good API and Why it Matters”
by Joshua Bloch, Google, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Characteristics of a Good API
• Easy to learn
• Easy to use, even without documentation
• Hard to misuse
• Easy to read and maintain code that uses it
• Sufficiently powerful to satisfy requirements
• Easy to extend
• Appropriate to audience

Ref: “How to Design a Good API and Why it Matters”
by Joshua Bloch, Google, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

API: General Principal
API Should Do One Thing and Do it Well
• Functionality should be easy to explain

If it's hard to name, that's generally a bad sign
Good names drive development
Be amenable to splitting and merging modules

• Can be easier and more rewarding to build something more general
• Conceptual weight more important than bulk
• Implementation should not impact API

Don't let implementation details “leak” into API
• When in doubt leave it out

Functionality, classes, methods, parameters, etc.
You can always add, but you can never remove

Ref: “How to Design a Good API and Why it Matters”
by Joshua Bloch, Google, Inc.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Naming Convention
In computer programming, a naming convention is a set of rules for choosing the character

sequence to be used for identifiers which denote variables, types, functions, and other entities in

source code and documentation.

Reasons for using a naming convention (as opposed to allowing programmers to choose any

character sequence) include the following:

● to reduce the effort needed to read and understand source code;[1]

● to enable code reviews be able to focus on more important issues than arguing over syntax

and naming standards.

● to enable code quality review tools be able to focus their reporting mainly on significant issues

other than syntax and style preferences.

● to enhance source code appearance (for example, by disallowing overly long names or

unclear abbreviations).

Ref. Wikipedia

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Naming_convention
https://en.wikipedia.org/wiki/Identifier
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_documentation
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Naming_convention_(programming)#cite_note-1

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Naming Convention: Python
Python.org
https://www.python.org/dev/peps/pep-0008/#naming-conventions

Class Names
Class names should normally use the CapWords convention.

Function Names
Function names should be lowercase, with words separated by underscores as necessary to improve readability.

Method Names and Instance Variables
Use the function naming rules: lowercase with words separated by underscores as necessary to improve readability.

Use one leading underscore only for non-public methods and instance variables.

Ref. Python.org

https://www.python.org/dev/peps/pep-0008/#id33
https://www.python.org/dev/peps/pep-0008/#id33
https://www.python.org/dev/peps/pep-0008/#id36
https://www.python.org/dev/peps/pep-0008/#id36
https://www.python.org/dev/peps/pep-0008/#id38
https://www.python.org/dev/peps/pep-0008/#id38

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Hamster: Robot API
• Accessor

• only retrieve information
• read values from Sensors packet (20 bytes)
• start with “get_”

• Mutator
• modify values or state
• write values to Effectors packet (20 bytes)
• start with “set_”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Bytes and Bits
1 Byte = 8 bits (1 bit = binary number):
- smallest addressable unit of memory
- usually expressed in hex since 1 byte = 8 bits = 2^8 numbers
- a single character of text
- [0, 255] if positive value only
- [-128, 127] in Two’s complement

ex) 0x00 = 0000 0000 = 0
0x0F = 0000 1111 = 2^0 + 2^1 + 2^2 + 2^3 = 2^4 - 1 = 15
0xFF = 1111 1111 = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7

= 2^8 - 1 = 255 or -1 in Two’s complement
0xF0 = 1111 0000 = 2^8 - 2^4 = 240 or -16 in Two’s complement
0x80 = 1000 0000 = 2^7 = 128 or -128 in Two’s complement
0x7F = 0111 1111 = 2^7 - 1 = 127

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Bitwise operators and masks
Operators: <<, >>, &, |, ^, ~
x << y: left shift (same as multiplying x by 2^y)

Shift x’s bits to the left by y places (and new bits on the right-hand-side are zeros).
x >> y: right shift (same as dividing x by 2^y if most significant bit is 0)

Shift x’s bits to the right by y places (and new bits on the left-hand-side are the same as the
most significant bit before the shift).

x & y: bitwise and
Each bit of output is 1 if AND of corresponding bits in x and y is 1, otherwise 0.

x | y: bitwise or
Each bit of output is 1 if OR of corresponding bits in x and y is 1, otherwise 0.

x ^ y: bitwise xor
Each bit of output is 1 if corresponding bits in x and y are different, otherwise 0.

~x: not / one’s complement (same as -x-1)
Invert each bit of x such that 0 → 1 and 1 → 0.

Masks: Using a mask, multiple bits can be set either on, off or inverted in a single bitwise operation.
Lower 4 bit mask: 0x0f
a = 0x1A (26) = 0001 1010
a & 0x0f = 1010 (10)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Bitwise operations: example
#!/usr/bin/python

a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101
c = 0

#bitwise operators

c = a & b # 12 = 0000 1100

c = a | b # 61 = 0011 1101

c = a ^ b # 49 = 0011 0001

c = ~a # -61 = 1100 0011

c = a >> 2 # 15 = a/4 = 0000 1111

c = a << 2 # 240(-16) = a*4 = 1111 0000

c = c >> 4 # 255(-1) = 1111 1111

#masks

c = (a & 0x0f) # value of lower 4 bits (bits 0~3): 12(c) = 1100

c = (a >> 4) & 0x0f # value of upper 4 bits (bits 4~7): 3 = 0011

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Two’s complement
Conversion from Two’s complement:

1. Invert binary number of a number with most significant bit = 1
0xF0 (240) = 1111 0000 → 0000 1111

2. Add 1
0000 1111 → 0001 0000 = 16

3. negate value from #2
-16 = 0xF0

Conversion to Two’s complement:
1. Get an absolute value of a negative number

-16 → 16 = 0001 0000
2. Invert binary number of value from #1

0001 0000 → 1110 1111
3. Add 1

1110 1111 → 1111 0000 = 0xF0 (2^7 + 2^6 + 2^5 + 2^4 = 240)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Assignment#1-2

RSSI >
minRSSI

Discover

Register

Connect

Scan

Registered?

Discon
nected

BLE
powered
on

yes

yes

no

no

BLE: connection/reconnection

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Assignment#1-2: Due 10/06/2015

Reference:
Hamster Manual
http://web.stanford.edu/class/cs123/materials/Hamster_Manual.pdf

Style Guide for Python Code: Naming Conventions by www.python.org
https://www.python.org/dev/peps/pep-0008/#naming-conventions

http://web.stanford.edu/class/cs123/materials/Hamster_Manual.pdf
http://web.stanford.edu/class/cs123/materials/Hamster_Manual.pdf
https://www.python.org/dev/peps/pep-0008/#naming-conventions
https://www.python.org/dev/peps/pep-0008/#naming-conventions

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Reference and Reading
“Getting started with Bluetooth Low Energy” by Townsend, Davidson & Akiba, O’Reilly
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html

“How to Design a Good API and Why it Matters” by Joshua Bloch, Google, Inc.
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

“Core Bluetooth Programming Guide” by Apple, Inc. (Introduction, Core Bluetooth Overview,
Performing Common Central Role Tasks, Best Practices for Interacting with a Remote Peripheral
Device)

“Core Bluetooth Framework Reference” by Apple, Inc. (Classes: CBCentralManager/CBPeripheral,
Protocols: CBCentralManagerDelegate/CBPeripheralDelegate)

Style Guide for Python Code: Naming Conventions by www.python.org
https://www.python.org/dev/peps/pep-0008/#naming-conventions

Hamster Manual
http://web.stanford.edu/class/cs123/materials/Hamster_Manual.pdf

https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
https://developer.apple.com/library/prerelease/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html#//apple_ref/doc/uid/TP40013257
https://developer.apple.com/library/prerelease/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html#//apple_ref/doc/uid/TP40013257
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://developer.apple.com/library/prerelease/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html#//apple_ref/doc/uid/TP40011295
https://www.python.org/dev/peps/pep-0008/#naming-conventions
https://www.python.org/dev/peps/pep-0008/#naming-conventions
http://web.stanford.edu/class/cs123/materials/Hamster_Manual.pdf
http://web.stanford.edu/class/cs123/materials/Hamster_Manual.pdf

