
Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

CS123
Programming Your Personal Robot

Part 2: Event Driven Behavior

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.2 Event Driven Programming
Implementation

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Topics
•  Threads

•  What are threads?
•  Why use threads?
•  Communication between threads?

• Queues
•  Implementing an Event System using Threads and Queue

•  Dispatcher
•  Handlers

•  Folder Structure (Behavior Package)
• Home Work Assignment (part 1)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What are Threads
Running several threads is similar to running
several different programs concurrently, but with
the following benefits:

• Multiple threads within a process share the same data
space with the main thread and can therefore share
information or communicate with each other more easily
than if they were separate processes.

•  Threads sometimes called light-weight processes and
they do not require much memory overhead; they are
“cheaper” than processes.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What are Threads For?
•  Threads are used in cases where the execution of a task

involves some waiting
• So we can execute multiple tasks “at the same time”

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Basic Threads
#from threading import Thread
import threading
import time

A thread that produces data
def first_thing():
 data = 0
 while (data < 10):
 data = data + 1
 print data
 time.sleep(0.1)

def main(argv=None):
 # creeating a thread

 t1 = threading.Thread(target=first_thing)
 #starting it
 t1.start()
 #wait until threads finish
 t1.join()
 print "thread 1 done”

if __name__ == "__main__":
 main()

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Communication Between Threads
•  Threads are running asynchronously
• Can communicate through global variables and

parameters
• Queue is often used for communication between threads

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Queue (in Python)
•  The Queue module implements multi-producer, multi-

consumer queues. It is especially useful in threaded
programming when information must be exchanged safely
between multiple threads. The Queue class in this module
implements all the required locking semantics.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Different “types” of Queue
•  FIFO queue:

•  class Queue.Queue(maxsize=0): maxsize is an integer that sets
the upperbound limit on the number of items that can be placed in
the queue.

•  LIFO queue:
•  class Queue.LifoQueue(maxsize=0)¶

• Priority queue:
•  class Queue.PriorityQueue(maxsize=0)¶

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Priority Queue
•  class Queue.PriorityQueue(maxsize=0)¶

•  The lowest valued entries are retrieved first (the lowest valued
entry is the one returned by sorted(list(entries))[0]). A typical pattern
for entries is a tuple in the form: (priority_number, data).

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Basic Queue
•  Queue.qsize()
•  Queue.empty()
•  Queue.full()
•  Queue.put(item[, block[, timeout]])

•  Put item into the queue. If optional args block is true and timeout is None (the
default), block if necessary until a free slot is available. If timeout is a positive
number, it blocks at most timeout seconds and raises the Full exception if no free
slot was available within that time. Otherwise (block is false), put an item on the
queue if a free slot is immediately available, else raise the Full exception (timeout is
ignored in that case).

•  Queue.put_nowait(item)
•  Equivalent to put(item, False).

•  Queue.get([block[, timeout]])
•  Remove and return an item from the queue. If optional args block is true and

timeout is None (the default), block if necessary until an item is available. If
timeout is a positive number, it blocks at most timeout seconds and raises the
Empty exception if no item was available within that time. Otherwise (block is
false), return an item if one is immediately available, else raise the Empty
exception (timeout is ignored in that case).

•  Queue.get_nowait()

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Event Queue

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A Simple Structure Using Queues

Sensing Acting

Draw/Display

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Folder Structure – Behavior Package

See example be_hamster.py

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Home Work #2-1: Escape Boundary
(black tape)

Robot

Obstacles (white boxes)

2 feet

3 feet

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Home Work #2-1: Escape

Avoid
Obstacles

Display Proximity Sensor Information Using Tkinter
(proportional to distance, does not have to be accurate)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Home Work #2-1: Escape
Escaped Boundary

(more than ½ robot is outside_
Stop and indicate “completion” (with sound)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

•  Implement 2 or more “handlers” (each running on its own
thread)

• Using 1 or more queues (for storing events)
•  There are different ways you can implement “dispatcher”

as discussed in class. Please put enough comments to
make it clear how you implement it (or you can write up a
description and submit with your homework)

Home Work #2-1: Escape

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.3 Finite State Machine (FSM)

