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CS123 
Programming Your Personal Robot 
 
Part 3: Reasoning Under Uncertainty 
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This Week (Week 2 of Part 3)  
•  Part 3-3 

•  Basic Introduction of Motion Planning 
•  Several Common Motion Planning Methods 
•  Plan Execution 
•  Planning Under Uncertainty  
•  HW #3-2  

•  Part 3-4 
•  Other Motion Planning Methods 
•  Search (in particular A*) 
•  Opportunity for Student Demo (Race?) 
•  Talk about Final Project 

•  Logistics (form team, submit proposal) 
•  Two Suggested Projects 
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3.3 Robot Motion Planning and Control 
Under Uncertainty 
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Topics  
•  Introduction to Robot Motion Planning 

•  Configuration Space (C-Space) Approach 
•  Basic Motion Planning Methods 

•  Plan Execution (Control) 
•  Virtual World (Perfect Control) 
•  Real World (Uncertainty in control) 

•  Planning Under Uncertainty 
•  Homework Assignment Part ＃3-2 
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What is Motion Planning 
•  Also known as the Piano Mover’s Problem 
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Problem Formulation  
•  The problem of motion planning can be stated as follows 

•  A start pose of the robot 
•  A desired goal pose 
•  A geometric description of the robot 
•  A geometric description of the world 

•  Find a path that moves the robot 
•  from start to goal while 
•  never touching any obstacle 
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Why Motion Planning For Robot 
•  A robot needs to move to accomplish 
task. Such movement should be 
“purposeful” (with respect to a given 
task or goal)” 
•  A robot’s ability to plan its movement 
is critical for it to be autonomous  
•  A vast research area  
•  A lot has been accomplished, but still 
a lot more to be done 
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Examples of Motion Planning 
•  Mobile Robots  
•  Manipulator (Arms) 
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Formal Definition of Motion Planning 

•  Configuration Space (C-Space) Approach – Mapping	
  
the	
  geometry	
  of	
  the	
  task	
  into	
  configura5on	
  space	
  allows	
  us	
  to	
  
transform	
  the	
  problem	
  of	
  planning	
  the	
  mo5on	
  of	
  a	
  
dimensioned	
  object	
  into	
  that	
  of	
  planning	
  the	
  mo5on	
  of	
  a	
  
point,	
  P	
   

•  First Introduced by Lozano Perez (MIT), 1980 
•  Robot reduced to a point in C-Space – Obstacles 
mapped into C-Obstacles (in C-Space) 
•  Finding a path in the free C-Space that connects the 
Start Configuration to the Goal Configuration 
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Configuration of A Robot  
•  Configuration of a robot: It is 
the precise specification of all 
of the robot's degrees of 
freedom (DOFs). 
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Example of 2D Circular Robot 

Work Space  Configuration Space  



Stanford University (cs123.stanford.edu)  © Kyong-Sok (KC) Chang & David Zhu 

2D Polygonal Object without Rotation 
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2D Polygonal Object with Rotation 
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2D Arm (2-links) 
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Challenges of Motion Planning 
•  Continuous space and high DOF’s 
•  3D “free-flying” rigid object : 6 DOF 
•  Puma Arm : 6 DOF 
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Motion Planning Methods 
•  Converting a “continuous” space problem into a discrete 
graph search problem (discretization of C-space) 
•  Decouple “independent” DoF 

•  mobile vs. manipulatiom 
•  We will focus on planning problem of mobile robots 
•  Visibility Graph  
•  Voronoi Diagrams 
•  Cell Decomposition 

•  Exact 
•  Approximate 
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Visibility Graph 
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Voronoi Diagrams  
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Cell Decomposition : Approximate 
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Cell Decomposition : Exact 
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Simplify Hamster’s Simple World 
•  We approximate Hamster as its Circumscribing Circle 
(we assume Hamster is a 40mm x 40 mm Square) 
•  Approximate the C-space obstacles by their bounding 
rectangle 

r = 20*sqrt(2) 
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A Simple Work Space / C-space 

Start Goal 
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Simple Motion Plan For Hamster 
Using Exact Cell Decomposition 

Start Goal 
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Path in Work Space 

Start Goal 



Stanford University (cs123.stanford.edu)  © Kyong-Sok (KC) Chang & David Zhu 

Plan Execution In A Perfect (Virtual)  World 
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Plan Execution In Real World 
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Control Error Propagation 
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Motion Planning With Uncertainty 
• 	
  Classical	
  path	
  planning	
  methods,	
  which	
  use	
  simple	
  
geometric	
  models	
  while	
  assuming	
  null	
  uncertainty,	
  
are	
  clearly	
  insufficient.	
  	
  	
  
• 	
  Taking	
  uncertainty	
  into	
  account	
  at	
  planning	
  5me	
  is	
  
essen5al	
  when	
  poten5al	
  control	
  errors	
  are	
  
comparable	
  to	
  or	
  larger	
  than	
  the	
  tolerances	
  allowed	
  
by	
  the	
  task.	
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Importance of “Landmarks” 
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“Landmarks” Helps Navigation 
Landmarks are every where and we (human) use 
landmarks extensively for our navigation often without 
realizing it 
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Use of Landmarks 
•  Must get “close enough” to a landmark 
•  And has a method to “search” for the landmark 

First get to the block where the restaurant is, and then 
walk up/down street looking for the name/sign 
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Use Of Landmark: Region Where Landmark 
Can be Reached  

Landmark 
Not precise representation 
X-y region depends on 
angular uncertainty 

Landmark can be reached when starting 
from this region, and executing a “moving 
straight” command with termination condition 
being proximty sensors detected obstacle 
(target) 



Stanford University (cs123.stanford.edu)  © Kyong-Sok (KC) Chang & David Zhu 

Concept of “Preimage” 
•  The “preimage” of a goal region for a given motion 
command M = (d, TC) is the set of all points in the robot’s 
configuration space such that if the robot starts executing 
the command from any one of these points, it is 
guaranteed to reach the goal and stop in it.  
•  We are only using the concept in a high level. For 
rigorous treatment of this topic, please see reading list 
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How to Guarantee Reaching New Goal Region 

Landmark 

New Goal Region 

What is the “Preimage” of this 
new goal region 
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Pre-image “Backchaining” 
•  Preimage backchaining consists of constructing a 
sequence of motion commands Mi, i= l,... ,n, such that, if 
P,, is the preimage of the goal for M,, P,_t the preimage of 
P,, for M,,_t, and so on, then Pt contains the initial region.  
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Home Work Part #3-2 

Goal Condition: Robot facing “obstacle 
A” toward the high lighted surface. 
 Both sensors detected obstacle A 

Start 

A 

You don’t have to 
automatically plan for the 
motion path. You can enter 
the robot path (a list of 
“subgoals”) for the robot to 
follow.  

B 

C 

D 

E 

F 

A, B, C, D, E, and F are 
obstacles. Robot should not 
come in contact with them 
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Home Work Part #3-2 

Goal Start 

A 
Robot should localize at least 2 
times during its travel 
 
Should not rely only on dead 
reckoning and “scanning” to find/
reach goal 
 
You can specify in your program 
where the robot should localize 
(part of the plan) 

A 

B 

C 

D 

E 

F 


