CS123

Programming Your Personal Robot

Part 3: Reasoning Under Uncertainty

Stanford University (cs123.stanford.edu)

© Kyong-Sok (KC) Chang & David Zhu

This Week (Week 2 of Part 3)

- Part 3-3
 - Basic Introduction of Motion Planning
 - Several Common Motion Planning Methods
 - Plan Execution
 - Planning Under Uncertainty
 - HW #3-2
- Part 3-4
 - Other Motion Planning Methods
 - Search (in particular A*)
 - Opportunity for Student Demo (Race?)
 - Talk about Final Project
 - Logistics (form team, submit proposal)
 - Two Suggested Projects

3.3 Robot Motion Planning and Control Under Uncertainty

Topics

- Introduction to Robot Motion Planning
 - Configuration Space (C-Space) Approach
 - Basic Motion Planning Methods
- Plan Execution (Control)
 - Virtual World (Perfect Control)
 - Real World (Uncertainty in control)
- Planning Under Uncertainty
- Homework Assignment Part # 3-2

What is Motion Planning

Also known as the Piano Mover's Problem

Problem Formulation

- The problem of motion planning can be stated as follows
 - A start pose of the robot
 - A desired goal pose
 - A geometric description of the robot
 - A geometric description of the world
- Find a path that moves the robot
 - from start to goal while
 - never touching any obstacle

Why Motion Planning For Robot

- A robot needs to move to accomplish task. Such movement should be "purposeful" (with respect to a given task or goal)"
- A robot's ability to plan its movement is critical for it to be autonomous
- A vast research area
- A lot has been accomplished, but still a lot more to be done

J.-C. Latombe (1991):

"...eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

Examples of Motion Planning

Formal Definition of Motion Planning

- **Configuration Space (C-Space) Approach** Mapping the geometry of the task into configuration space allows us to transform the problem of planning the motion of a dimensioned object into that of planning the motion of a point, P
 - First Introduced by Lozano Perez (MIT), 1980
- Robot reduced to a **point** in C-Space Obstacles mapped into C-Obstacles (in C-Space)
- Finding a path in the free C-Space that connects the Start Configuration to the Goal Configuration

Configuration of A Robot

• Configuration of a robot: It is the precise specification of all of the robot's degrees of freedom (DOFs).

Example of 2D Circular Robot

Stanford UniversWork3Spaceedu)

Configuration) SpaceDavid Zhu

2D Polygonal Object without Rotation

2D Polygonal Object with Rotation

Stanford University (cs123.stanford.edu)

2D Arm (2-links)

Challenges of Motion Planning

- Continuous space and high DOF's
- 3D "free-flying" rigid object : 6 DOF
- Puma Arm : 6 DOF

Motion Planning Methods

- Converting a "continuous" space problem into a discrete graph search problem (discretization of C-space)
- Decouple "independent" DoF
 - mobile vs. manipulatiom
- We will focus on planning problem of mobile robots
- Visibility Graph
- Voronoi Diagrams
- Cell Decomposition
 - Exact
 - Approximate

Visibility Graph

Voronoi Diagrams

Cell Decomposition : Approximate

Cell Decomposition : Exact

(d)

(e)

Simplify Hamster's Simple World

- We approximate Hamster as its Circumscribing Circle (we assume Hamster is a 40mm x 40 mm Square)
- Approximate the C-space obstacles by their bounding rectangle

A Simple Work Space / C-space

Simple Motion Plan For Hamster Using Exact Cell Decomposition

Path in Work Space

Stanford University (cs123.stanford.edu)

© Kyong-Sok (KC) Chang & David Zhu

Plan Execution In A Perfect (Virtual) World

Plan Execution In Real World

avid Zhu

Control Error Propagation

Motion Planning With Uncertainty

- Classical path planning methods, which use simple geometric models while assuming null uncertainty, are clearly insufficient.
- Taking uncertainty into account at planning time is essential when potential control errors are comparable to or larger than the tolerances allowed by the task.

Importance of "Landmarks"

© Kyong-Sok (KC) Chang & David Zhu

"Landmarks" Helps Navigation

Landmarks are every where and we (human) use landmarks extensively for our navigation often without realizing it

Use of Landmarks

- Must get "close enough" to a landmark
- And has a method to "search" for the landmark

First get to the block where the restaurant is, and then walk up/down street looking for the name/sign

Stanford University (cs123.stanford.edu)

Use Of Landmark: Region Where Landmark Can be Reached

© Kyong-Sok (KC) Chang & David Zhu

Concept of "Preimage"

- The "preimage" of a goal region for a given motion command M = (d, TC) is the set of all points in the robot's configuration space such that if the robot starts executing the command from any one of these points, it is guaranteed to reach the goal and stop in it.
- We are only using the concept in a high level. For rigorous treatment of this topic, please see reading list

How to Guarantee Reaching New Goal Region

Pre-image "Backchaining"

Preimage backchaining consists of constructing a sequence of motion commands Mi, i= I,..., n, such that, if P,, is the preimage of the goal for M,, P,_t the preimage of P,, for M,,_t, and so on, then Pt contains the initial region.

Home Work Part #3-2

Home Work Part #3-2

