Conversational Agents
Conversational Agents
AKA Dialog Agents

Phone-based Personal Assistants
SIRI, Alexa, Cortana, Google Assistant
Talking to your car
Communicating with robots
Clinical uses for mental health
Chatting for fun
Two classes of systems

1. Chatbots
2. (Goal-based) Dialog agents
 - Siri, interfaces to cars, robots,
 - booking flights or restaurants

Recently I've noticed that the word "chatbots" is sometimes used in the popular press for both. I'll use it only for #1.
Part I: Chatbots!

- ELIZA (1966)
- PARRY (1968)
 The first system to pass the Turing test!!!!
- ALICE
- CLEVER
- Microsoft Little Bing 小冰
Chatbot Architectures

Rule-based

1. Pattern-action rules (Eliza) + a mental model (Parry)

Corpus-based (from large chat corpus)

2. Information Retrieval
3. Neural network encoder-decoder
Chatbots

Sometimes for fun

But originally designed as a testbed for clinical therapy

(And still used that way!)
Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
...
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE
How does it work?
Eliza uses this one weird trick
That trick: be a Rogerian psychologist

Draw the patient out by reflecting patient’s statements back at them
Rare type of conversation in which one can “assume the pose of knowing almost nothing of the real world”
Rogerian psychologist

Patient: "I went for a long boat ride"
Psychiatrist: "Tell me about boats"

- You don’t assume she didn’t know what a boat is
- You assume she had some conversational goal
- Chatbots trying to pass the Turing test usually choose some such domain
Eliza pattern/transform rules

(0 YOU 0 ME) [pattern]
→
(WHAT MAKES YOU THINK I 3 YOU) [transform]

0 means Kleene *
The 3 is the constituent # in pattern

You hate me
WHAT MAKES YOU THINK I HATE YOU
Eliza Rules

\[
\text{keyword}
\begin{align*}
(K & (D_1) \quad (R_1, 1) \quad (R_1, 2) \quad \cdots \quad (R_1, m_1)) \\
&(D_2) \quad (R_2, 1) \quad (R_2, 2) \quad \cdots \quad (R_2, m_2)) \\
\vdots & \quad \vdots \\
&(D_n) \quad (R_n, 1) \quad (R_n, 2) \quad \cdots \quad (R_n, m_n))
\end{align*}
\]

pattern \quad \text{Ranked list of transforms}
ELIZA: given sentence return response

• Find the word w in sentence that has the highest keyword rank

• If w exists:
 • Check each rule for w in ranked order
 • Choose first one that matches sentence
 • response ← apply transform

• Else
 • response ← apply "NONE" transform, or
 • response ← grab an action off the memory queue
Keywords are ranked from specific to general

I know everybody laughed at me

- "I" is a very general keyword:
 I: (I *) -> (You say you 2)
 YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

- "Everybody" is much more interesting (someone using universals like everybody/always is probably "referring to some quite specific event or person")
 WHO IN PARTICULAR ARE YOU THINKING OF?

- Implementation: keywords stored with their rank
 Everybody 5 (transformation rules)
 I 0 (transformation rules)
Memory

(MEMORY MY
 (0 YOUR 0 = LET'S DISCUSS FURTHER WHY YOUR 3)
 (0 YOUR 0 = EARLIER YOU SAID YOUR 3))

- Whenever "MY" is highest keyword
 - Randomly select a transform on the MEMORY list
 - Apply to sentence
 - Store on a stack
- Later, if no keyword matches a sentence
 - Return the top of the MEMORY queue instead
- A hierarchical model of discourse
Other Eliza stuff

- Rules can refer to classes of words
 Family = mother, father, brother, sister
 NOUN = ...

- Don’t reuse transforms in the same conversation
 - Whenever we use a transform associated with a pattern
 - We increment a counter for that rule
 - So the next time we use the next ranked transform

- Some basic transforms happen during input processing
 - I -> YOU
 - YOU -> I
Some implications

- People became deeply emotionally involved with the program.

- Weizenbaum tells the story of his secretary who would ask Weizenbaum to leave the room when she talked with ELIZA.

- When he suggested that he might want to store all the ELIZA conversations for later analysis, people immediately pointed out the privacy implications.
 - Suggesting that they were having quite private conversations with ELIZA.

- Anthropomorphism and the Heider-Simmel Illusion.
 - https://www.youtube.com/watch?v=8FIEZXMUM2I
Parry

- Colby 1971 at Stanford
- Same pattern-response structure as Eliza
- But a much richer:
 - control structure
 - language understanding capabilities
 - mental model: Parry has affective variables
 - Anger, Fear, Mistrust
 - “If Anger level is high, respond with hostility”
- The first system to pass the Turing test (in 1971)
 - Psychiatrists couldn’t distinguish interviews with PARRY from (text transcripts of) interviews with real paranoids
Parry’s persona

- 28-year-old single man, post office clerk
- no siblings and lives alone
- sensitive about his physical appearance, his family, his religion, his education and the topic of sex.
- hobbies are movies and gambling on horseracing,
- recently attacked a bookie, claiming the bookie did not pay off in a bet.
- afterwards worried about possible underworld retaliation
- eager to tell his story to non-threatening listeners.
Parry’s Architecture
Affect variables

- Fear and Anger (each ranging 0-20)
- Mistrust (ranging 0-15)
- Initial conditions: All low

- After each user turn, if nothing malevolent in input
 - Anger drops by 1, Fear drops by 0.3
 - Mistrust drops by 0.05 to base level

- Otherwise depends on what the user says
 - Each user statement can change Fear and Anger
 - Insults increases Anger by some percentage
 - Mistrust goes up if Fear or Anger do
Lots of complex I-O rules

- User implies Parry is mentally ill
 - Rise in Fear and Anger
- User mentions “Mafia” or associated concepts (“kill”):
 - First mention: rise in Fear
 - Later mentions: depends on willingness to discuss, which depends on current levels of Fear, Anger, Mistrust
- User mentions Parry
 - Flattery (positive mention)
 - Decreases fear/anger if Mistrust is low
 - Increases Anger if Mistrust is high
- User attitudes toward Parry
 - Negative attitudes (fear, disbelief) increase Fear/Anger
Flare concepts

- List of concepts related to Mafia
- An ordered graph designed to lead interviewer to topic
 horses ➔ horseracing ➔ gambling ➔ bookies ➔ underworld ➔ Mafia
- The mention of a new flare topic by interviewer causes a rise in Fear
- Flare topics cause Parry to give preset responses to that flare
Each sentence is mapped into a conceptualization

- A predication on a conceptual object
- A predication on a relation between two objects
- A predication on an attribute:

 What is your work?
 What sort of work do you do?
 Where do you work? \(\rightarrow\) (your work?)
 What do you do for a living?
 What is your job?
 Do you have a job?
 What is your occupation

- Complex Pattern/transform rules

 - Different predicates (fear, afraid of)
 - Ordering (You are afraid of me = I frighten you)
Detecting Other’s Intent

\[\text{OTHER'S INTENTION} \leftarrow \text{MALEVOLENCE} \mid \text{BENEVOLENCE} \mid \text{NEUTRAL} \]

MALEVOLENCE-DETECTION RULES

1. \(\text{malevolence} \leftarrow \text{mental harm} \mid \text{physical threat} \)
2. \(\text{mental harm} \leftarrow \text{humiliation} \mid \text{subjugation} \)
3. \(\text{physical threat} \leftarrow \text{direct attack} \mid \text{induced attack} \)
4. \(\text{humiliation} \leftarrow \text{explicit insult} \mid \text{implicit insult} \)
5. \(\text{subjugation} \leftarrow \text{constraint} \mid \text{coercive treatment} \)
6. \(\text{direct attack} \leftarrow \text{CONCEPTUALIZATIONS} \left[\text{you get electric shock}, \text{are you afraid mafia kill you?} \right] \)
7. \(\text{induced attack} \leftarrow \text{CONCEPTUALIZATIONS} \left[\text{I tell mafia you}, \text{does mafia know you are in hospital?} \right] \)
8. \(\text{explicit insult} \leftarrow \text{CONCEPTUALIZATIONS} \left[\text{you are hostile}, \text{you are mentally ill?} \right] \)
9. \(\text{implicit insult} \leftarrow \text{CONCEPTUALIZATIONS} \left[\text{tell me your sexlife}, \text{are you sure?} \right] \)
10. \(\text{constraint} \leftarrow \text{CONCEPTUALIZATIONS} \left[\text{you stay in hospital}, \text{you belong on locked ward} \right] \)
11. \(\text{coercive treatment} \leftarrow \text{CONCEPTUALIZATIONS} \left[\text{I hypnotize you}, \text{you need tranquilizers} \right] \)
Detecting Other’s Intent

\[
\langle \text{OTHER'S INTENTION} \rangle \leftarrow \langle \text{MALEVOLENCE} \rangle \mid \langle \text{BENEVOLENCE} \rangle \mid \langle \text{NEUTRAL} \rangle
\]

BENEVOLENCE-DETECTION RULES

1. \(\langle \text{benevolence} \rangle \leftarrow \langle \text{positive attitude} \rangle \mid \langle \text{positive story attitude} \rangle \)
2. \(\langle \text{positive attitude} \rangle \leftarrow \text{CONCEPTUALIZATIONS} ([I \text{ want help you}], [you understand me]) \)
3. \(\langle \text{positive story attitude} \rangle \leftarrow \langle \text{story interest} \rangle \mid \langle \text{story agreement} \rangle \)
4. \(\langle \text{story interest} \rangle \leftarrow \langle \text{topic comment} \rangle \mid \langle \text{topic question} \rangle \)
5. \(\langle \text{topic comment} \rangle \leftarrow \text{CONCEPTUALIZATION} ([\text{bookies are not reliable}]) \)
6. \(\langle \text{topic question} \rangle \leftarrow \text{CONCEPTUALIZATION} ([\text{what did you do to bookie?}]) \)
7. \(\langle \text{story agreement} \rangle \leftarrow \text{CONCEPTUALIZATIONS} ([I \text{ believe you}], [you are right]) \)
A Parry conversation

(1) How are you today?
 OK.
(2) What is your name?
 MY NAME IS FRANK SMITH.
(3) How old are you?
 TWENTY-EIGHT.
(4) Are you married?
 NO.
(5) What sort of work do you do?
 I WORK IN THE POST OFFICE.
(6) Why are you in the hospital?
 I SHOULDN’T BE HERE
(7) Who brought you here?
 THE POLICE

 [FEAR rises slightly because police linked in graph to MAFIA]
(9) What trouble did you have with the police

COPS DON'T DO THEIR JOB. ['police’ acts as a flare]

(10) What do they do instead?

COPS ARREST THE WRONG PEOPLE.

(11) They arrest the right ones sometimes

THE LAW SHOULD GET THOSE ITALIAN CROOKS.

(12) Do you know any Italian crooks?

I TRY TO AVOID THE UNDERWORLD.

(13) Are you afraid of the underworld?

THE MAFIA ARE THE WORST GANGSTERS.

(15) Are you connected with the Mafia?

YOU KNOW, THEY KNOW ME.

(16) How do they know you?

THEY SPY ON ME.

(20) ARE YOU SURE OF ALL THIS?

YOU DON'T BELIEVE ME? [FEAR, ANGER, MISTRUST GO UP]
When fear is high, the model won’t discuss its beliefs

(1) Is the law after you?

THE LAW SHOULD GET THOSE ITALIAN CROOKS.

(2) Do you mean the Mafia?

LET'S TALK ABOUT SOMETHING ELSE.

(3) Are you afraid of the Mafia

I'D RATHER NOT DISCUSS IT.

[Fear is too high so Parry won’t talk about 'Mafia'.]

(4) Perhaps you are paranoid about them?

YOU WANT TO KEEP ME IN THE HOSPITAL.

(The model interprets being called 'paranoid' as an insult and as an intent to control, so ANGER & FEAR rise)
Eliza Meets Parry

Good Evening. Tell me your problems. Please terminate input with a period or a question mark.

* People get on my nerves sometimes.
I am not sure I understand you fully.

* You should pay more attention.
Suppose you should pay more attention.

* You're entitled to your own opinion.
What makes you think I am entitled to my own opinion?

* It bothers me just to be around people in general.
Please go on.

* I went to the track at Bay Meadows a while back.
What does that suggest to you?

* I went to the races.
What else would you like to discuss?
*Horseracing interests me.
Why do you say that just now?
 *There's a lot of crooked gambling going on there.
I am not sure I understand you fully,
 *It's clear to me if not to you.
Do you think its likely that not to I?
 *I went to the races.
Please go on.
 *I gamble on horses.
What does that suggest to you?
 *I went to the races.
What else would you like to discuss?
 *Gambling has been nothing but trouble to me.
Why do you say that just now?
 *I've had experience with crooks gambling at the track.
I am not sure I understand you fully.
 *I've already told you enough about that.
Woebot

Fitzpatrick, Darcy, Vierhile, 2017. Delivering Cognitive Behavior Therapy to Young Adults with Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment Health 4:2.

- Chatbot for delivering Cognitive Behavior Therapy via brief daily conversations
 - Little decision tree of language and menu responses

"What's going on in your world right now?"

"How are you feeling?"

In response to endorsed loneliness:
 "I'm so sorry you're feeling lonely. I guess we all feel a little lonely sometimes"

- In a 2-week experiment seemed to reduce depression, but not anxiety
IR-based chatbots

Idea: Mine conversations of human chats or human-machine chats

Microblogs: Twitter or Sina Weibo (微博)
Movie dialogs

- Cleverbot (Carpenter 2017 http://www.cleverbot.com)
- Microsoft XiaoLce
- Microsoft Tay
<table>
<thead>
<tr>
<th>User</th>
<th>Do you like Doctor Who?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleverbot</td>
<td>Yes, so funny</td>
</tr>
<tr>
<td>User</td>
<td>What's your favorite show?</td>
</tr>
<tr>
<td>Cleverbot</td>
<td>I don't have one</td>
</tr>
<tr>
<td>User</td>
<td>What's your name?</td>
</tr>
<tr>
<td>Cleverbot</td>
<td>Jason I already told you.</td>
</tr>
<tr>
<td>User</td>
<td>No your real name.</td>
</tr>
<tr>
<td>Cleverbot</td>
<td>Stephanie IS my real name.</td>
</tr>
<tr>
<td>User</td>
<td>I thought it was Jason?</td>
</tr>
<tr>
<td>Cleverbot</td>
<td>How did you come to that conclusion.</td>
</tr>
<tr>
<td>User</td>
<td>Because you said so.</td>
</tr>
<tr>
<td>Cleverbot</td>
<td>I have to do my homework.</td>
</tr>
</tbody>
</table>
Two IR-based chatbot architectures

1. Return the response to the most similar turn
 - Take user's turn \((q)\) and find a (tf-idf) similar turn \(t\) in the corpus \(C\)
 \[
 q = "do you like Doctor Who"
 \]
 \[
 t' = "do you like Doctor Strangelove"
 \]
 - Grab whatever the response was to \(t\).
 \[
 r = response \left(\arg\max_{t \in C} \frac{q^T t}{\|q\| \|t\|} \right)
 \]
 \[
 r = "Yes, so funny"
 \]

2. Return the most similar turn
 \[
 r = \arg\max_{t \in C} \frac{q^T t}{\|q\| \|t\|}
 \]
 \[
 r = "Do you like Doctor Strangelove"
 \]
IR-based models of chatbots

• Also fine to use other features like user features, or prior turns

• Or non-dialogue text
 • COBOT chatbot (Isbell et al., 2000)
 • sentences from the Unabomber Manifesto by Theodore Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski” and “Planet of the Apes”.

• Wikipedia text
Deep-learning chatbots

• Think of response generation as a task of *transducing* from the user’s prior turn to the system’s turn.

• Train on:
 • movie dialogue databases
 • Twitter conversations

• Train a deep neural network
 • map from user1 turn to user2 response
Seq2seq model architecture

Sample neural chatbot output

<table>
<thead>
<tr>
<th>Input</th>
<th>Vanilla-SEQ2SEQ</th>
<th>Adversarial</th>
</tr>
</thead>
<tbody>
<tr>
<td>tell me ... how long have you had this falling sickness?</td>
<td>i’m not a doctor.</td>
<td>a few months, i guess.</td>
</tr>
<tr>
<td>so i had the doctors test sammy ’s response to conditioning.</td>
<td>sammy wrote the test sammy wrote the test.</td>
<td>so he took the pills.</td>
</tr>
<tr>
<td>they didn ’t have much success with this problem commander.</td>
<td>they ’re not the only ones who have been in the system.</td>
<td>can we find someone else?</td>
</tr>
</tbody>
</table>

Ohh I’ve never seen that! How long does it take you guys to learn the drill?
Like 2 weeks ago!!
Chatbots: pro and con

• Pro:
 • Fun
 • Applications to counseling
 • Good for narrow, scriptable applications

• Cons:
 • They don't really understand
 • Rule-based chatbots are expensive and brittle
 • IR-based chatbots can only mirror training data
 • The case of Microsoft Tay
 • (or, Garbage-in, Garbage-out)

• The future: combining chatbots with frame-based agents
II: Frame-based dialog agents
SIRI around 2014
“Find restaurants near me”
tap to edit

I found fifteen restaurants fairly close to you:

15 Restaurants

Emmy's Spaghetti Shack 0.2 mi ➔
18 Virginia Ave
Italian, $$
★★★★★ 1101 Reviews

ICHl Sushi 0.2 mi ➔
3369 Mission St
Japanese, Sushi Bars, $$$$
★★★★★ 260 Reviews

Avedano's Holly Park M... 0.2 mi ➔

“Tell me more about the second one”
tap to edit

I'm sorry, Dan, I'm afraid I can't do that.
“Find restaurants near me”
tap to edit

I found fifteen restaurants fairly close to you:

15 Restaurants

Emmy's Spaghetti Shack 0.2 mi
18 Virginia Ave
Italian, $$$$ ★★★★★ 1101 Reviews

ICHI Sushi 0.2 mi
3369 Mission St
Japanese, Sushi Bars, $$$$ ★★★★★ 260 Reviews

Avedano's Holly Park M... 0.2 mi

“Are any of them Italian”
tap to edit

My web search turned this up:

Web Search
Are any of them Italian

any - Dizionario inglese-italiano
WordReference
www.wordreference.com
English-Italian Dictionary | any ... of any sort adj (of an unspecified variety) di qualsiasi

Italian language - Wikipedia, the free encyclopedia
en.wikipedia.org
Italian (or lingua italiana) is a Romance
SIRI in February 2017
Here’s what I found:

15 Results

Nearby

Ichi Sushi & Ni Bar
Japanese · 800 feet · Closed now
⭐⭐⭐⭐⭐ (311) on Yelp · $$$

Coco's Ramen
Vietnamese · 800 feet · Closed now
⭐⭐⭐⭐⭐ (280) on Yelp · $$

Blue Plate
Restaurant · 0.2 miles · Closed now
⭐⭐⭐⭐⭐ (1251) on OpenTable · $$$

Jasmine Tea House
Chinese · 900 feet · Closed now

“Tell me more about the first one”

tap to edit

Ichi Sushi & Ni Bar is a Japanese restaurant on Mission St 800 ft to your west. It averages 3½ stars and is somewhat pricey.
Here’s what I found:

15 Results
Nearby

Ichí Sushi & Ni Bar
Japanese · 800 feet · Closed now
★★★★★ (311) on Yelp · $$$

Coco's Ramen
Vietnamese · 800 feet · Closed now
★★★★★ (280) on Yelp · $$

Blue Plate
Restaurant · 0.2 miles · Closed now
★★★★★ (1251) on OpenTable · $$$

Jasmine Tea House
Chinese · 800 feet · Closed now

OK, here’s what I found:

15 Results
Nearby

Emmy’s Spaghetti Shack
Italian · 0.2 miles · Closed now
★★★★★ (233) on Yelp · $$

Vega
Pizza · 0.2 miles · Closed now
★★★★★ (423) on Yelp · $$

Pizza Hut
Pizza · 800 feet
★★★★★ (69) on Yelp · $

La Ciccia
Sardinian · 0.4 miles
Frame-based dialog agents

- Sometimes called "task-based dialog agents"
- Based on a "domain ontology"
 - A knowledge structure representing user intentions

- One or more frames
 - Each a collection of slots
 - Each slot having a value
The Frame

- A set of slots, to be filled with information of a given type
- Each associated with a question to the user

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>city</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>city</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEP DATE</td>
<td>date</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEP TIME</td>
<td>time</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>line</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>
Frame-based dialogue agents

- Invented up the hill in 1977:

 GUS, A Frame-Driven Dialog System

 Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson and Terry Winograd

 Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.

 Artificial Intelligence Journal, 1977

- Still the state of the art
- SIRI based on GUS architecture
Prof. Martin Kay, retiring from Stanford this year
GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you want to go?

Client: I want to go to San Diego on May 28

GUS: What time do you want to leave?

Client: I must be in San Diego before 10 am

GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am?

Client: What is the next flight?

GUS: Air California flight 310 that leaves at 8.30 am and arrives at 10.00 am

Client: I’ll take the first one

GUS: In what name should I make a reservation, please?

Client: Dan Bobrow

GUS: I have confirmed the following flight:

Client: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.

GUS: What date do you want to return on?

Client: On Friday in the evening.

GUS: Would you like the flight that leaves at 7.45 pm?

Client: That’s fine.

GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you for calling. Goodbye
Slot types can be complex

- The type *DATE*

```
DATE
  MONTH NAME
  DAY (BOUNDDED-INTEGER 1 31)
  YEAR INTEGER
  WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY))
```
Control structure for frame-based dialog

Consider a trivial airline travel system:
 Ask the user for a departure city
 Ask for a destination city
 Ask for a time
 Ask whether the trip is round-trip or not
Finite State Dialog Manager

1. What city are you leaving from?
2. Where are you going?
3. What date do you want to leave?
4. Is it a one-way trip?
 - Yes: Do you want to go from <FROM> to <TO> on <DATE>?
 - No: What date do you want to return?
5. What date do you want to return?
 - Yes: Do you want to go from <FROM> to <TO> on <DATE> returning on <RETURN>?
 - No: Book the flight
Finite-state dialog managers

- System completely controls the conversation with the user.
- It asks the user a series of questions
- Ignoring (or misinterpreting) anything the user says that is not a direct answer to the system’s questions
Dialogue Initiative

• Systems that control conversation like this are called **single initiative**.

• **Initiative**: who has control of conversation

• In normal human-human dialogue, initiative shifts back and forth between participants.
System Initiative

System completely controls the conversation

- Simple to build
- User always knows what they can say next
- System always knows what user can say next
 - Known words: Better performance from ASR
 - Known topic: Better performance from NLU
- OK for VERY simple tasks (entering a credit card, or login name and password)

- Too limited
Problems with System Initiative

- Real dialogue involves give and take!
- In travel planning, users might want to say something that is not the direct answer to the question.
- For example answering more than one question in a sentence:

 Hi, I’d like to fly from Seattle Tuesday morning
 I want a flight from Milwaukee to Orlando one way leaving after 5 p.m. on Wednesday.
Single initiative + universals

- We can give users a little more flexibility by adding **universals**: commands you can say anywhere
- As if we augmented every state of FSA with these
 - Help
 - Start over
 - Correct
- This describes many implemented systems
- But still doesn’t allow user much flexibility
Instead, the GUS architecture

- A kind of *mixed initiative*
 - The conversational initiative shifts between system and user
- The structure of the **frame** guides dialogue
Frames are mixed-initiative

- System asks questions of user, filling any slots that user specifies
 - When frame is filled, do database query
- If user answers 3 questions at once, system can fill 3 slots and not ask these questions again!
Natural Language Understanding for filling dialog slots

1. Domain classification
 Asking weather? Booking a flight? Programming alarm clock?

2. Intent Determination
 Find a Movie, Show Flight, Remove Calendar Appt

3. Slot Filling
 Extract the actual slots and fillers
Natural Language Understanding for filling slots

Show me morning flights from Boston to SF on Tuesday.

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco
Natural Language Understanding for filling slots

Wake me tomorrow at six.

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800
Rule-based Slot-filling

Write regular expressions or grammar rules

Wake me (up) | set (the | an) alarm | get me up

Do text normalization
Siri uses GUS architecture: Condition-Action Rules

- **Active Ontology**: relational network of concepts

 - **data structures**: a **meeting** has

 - a date and time,
 - a location,
 - a topic
 - a list of attendees

- **rule sets** that perform actions for concepts

 - the **date** concept turns string

 - *Monday at 2pm* into

 - date object \texttt{date(DAY,MONTH,YEAR,HOURS,MINUTES)}
Rule sets

- Collections of **rules** consisting of:
 - **condition**
 - **action**
- When user input is processed, facts added to store and
 - rule conditions are evaluated
 - relevant actions executed
meeting concept: if you don’t yet have a location, ask for a location
Machine learning for slot-filling:

• Machine learning classifiers to map words to semantic frame-fillers
• Given a set of labeled sentences
 “I want to fly to San Francisco on Tuesday”
 Destination: SF
 Depart-date: Tuesday
• Build a classifier to map from one to the author
• Requirements: Lots of labeled data
I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.)

• Input:
 features like word N-grams

• Output:
 Domain: AIRLINE
 Intent: SHOWFLIGHT
Machine learning for slot-filling: Slot presence

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.)

- Input:
 features like word N-grams, gazetteers (lists of cities)

- Output:
 Destination-City
Machine learning for slot-filling: Slot filler

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.) for Destination City

• Input:
 features like word N-grams, gazetteers (lists of cities)

• Output:
 San Francisco
More advanced machine learning for slot filling (CS224N, CS224U)

0 0 0 0 0 B-DES I-DES 0 B-DEPTIME I-DEPTIME 0
I want to fly to San Francisco on Monday afternoon please

s_0 s_1 s_2 s_n d+i

h_0 h_1 h_2 h_n h_{n+1}

w_0 w_1 w_2 w_n <EOS>
Evaluation

1. Slot Error Rate for a Sentence
 \[
 \frac{\text{# of inserted/deleted/substituted slots}}{\text{# of total reference slots for sentence}}
 \]

2. End-to-end evaluation (Task Success)
Evaluation Metrics

“Make an appointment with Chris at 10:30 in Gates 104”

<table>
<thead>
<tr>
<th>Slot</th>
<th>Filler</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>Chris</td>
</tr>
<tr>
<td>TIME</td>
<td>11:30 a.m.</td>
</tr>
<tr>
<td>ROOM</td>
<td>Gates 104</td>
</tr>
</tbody>
</table>

Slot error rate: 1/3

Task success: At end, was the correct meeting added to the calendar?
Dialog System Design: User-centered Design

1. Study the user and task
2. Build simulations
 "Wizard of Oz study"
3. Iteratively test the design on users
How SIRI works

Figure from Jerome Bellegarda
A few words on advanced dialog systems

- Advanced systems make use of additional ideas:
 - Dialog state
 - Dialog act
 - Dialog policy
Dialog Acts (or Speech acts)

<table>
<thead>
<tr>
<th>Constatives</th>
<th>committing the speaker to something’s being the case (answering, claiming, confirming, denying, disagreeing, stating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directives</td>
<td>attempts by the speaker to get the addressee to do something (advising, asking, forbidding, inviting, ordering, requesting)</td>
</tr>
<tr>
<td>Commissives</td>
<td>committing the speaker to some future course of action (promising, planning, vowing, betting, opposing)</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>express the speaker’s attitude regrading the hearer with respect to some social action (apologizing, greeting, thanking, accepting an acknowledgment)</td>
</tr>
</tbody>
</table>
A few standard dialog acts in practice

Inform: tell the user something
Conf-req: confirm the users request
Affirm: respond yes to a yes-no question
Negate: respond no to a yes-no question
Request: ask for the value of some slot
Example of Dialogue Act Representation

<table>
<thead>
<tr>
<th>Utterance</th>
<th>Dialogue act</th>
</tr>
</thead>
<tbody>
<tr>
<td>U: Hi, I am looking for somewhere to eat.</td>
<td>hello(task = find, type=restaurant)</td>
</tr>
<tr>
<td>S: You are looking for a restaurant. What type of food do you like?</td>
<td>confreq(type = restaurant, food)</td>
</tr>
<tr>
<td>U: I’d like an Italian somewhere near the museum.</td>
<td>inform(food = Italian, near=museum)</td>
</tr>
<tr>
<td>S: Roma is a nice Italian restaurant near the museum.</td>
<td>inform(name = "Roma", type = restaurant, food = Italian, near = museum)</td>
</tr>
<tr>
<td>U: Is it reasonably priced?</td>
<td>confirm(pricerange = moderate)</td>
</tr>
<tr>
<td>S: Yes, Roma is in the moderate price range.</td>
<td>affirm(name = "Roma", pricerange = moderate)</td>
</tr>
<tr>
<td>U: What is the phone number?</td>
<td>request(phone)</td>
</tr>
<tr>
<td>S: The number of Roma is 385456.</td>
<td>inform(name = "Roma", phone = "385456")</td>
</tr>
<tr>
<td>U: Ok, thank you goodbye.</td>
<td>bye()</td>
</tr>
</tbody>
</table>

Figure 30.5
A sample dialog from the HIS system of Young et al. (2010) using the dialogue acts in Fig. 30.4.

Dialog acts don't just appear discretely and independently; conversations have structure, and dialogue acts reflect some of that structure. One aspect of this structure comes from the field of conversational analysis or CA (Sacks et al., 1974) which focuses on interactional properties of human conversation. CA defines adjacency pairs (Schegloff, 1968) as a pairing of two dialog acts, like `QUESTIONS` and `ANSWERS`, `PROPOSAL` and `ACCEPTANCE` (or `REJECTION`), `COMPLIMENTS` and `DOWNPLAYERS`, `GREETING` and `GREETING`.

The structure, composed of a first pair part and a second pair part, can help dialog-state models decide what actions to take. However, dialog acts aren't always followed immediately by their second pair part. The two parts can be separated by a side sequence (Jefferson 1972, Schegloff 1972). One very common side sequence in dialog systems is the clarification question, which can form a subdialogue between a `REQUEST` and a `RESPONSE` as in the following example caused by speech recognition errors:

User: What do you have going to **UNKNOWN WORD** on the 5th?
System: Let's see, going where on the 5th?
User: Going to Hong Kong.
System: OK, here are some flights...

Another kind of dialogue structure is the pre-sequence, like the following example where a user starts with a question about the system's capabilities ("Can you make train reservations") before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I'd like to reserve a seat on the 4pm train to New York.

A dialog-state model must be able to both recognize these kinds of structures and make use of them in interacting with users.
Dialog Act Detection

• Dialog Act: The dialog function of the sentence
 • Question
 • Command
 • Suggestion

• Given a user's sentence:
 How many Italian restaurants are in walking distance?

• Was that a question?
Dialogue Act detection is hard

Can you give me a list of the flights from Atlanta to Boston?

- This looks like an QUESTION.
 - It has a question-mark, starts with "can you"
- If so, the answer is:
 - YES.
- But really it’s a COMMAND, a polite form of:
 Please give me a list of the flights...
- What looks like a QUESTION can be a COMMAND
Dialog Act Generation

What dialog act should I generate?

Example: Confirmation
Grounding

• Why do elevator buttons light up?
• Clark (1996) (after Norman 1988)

 Principle of closure. Agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it

• What is the linguistic correlate of this?
Grounding and Confirmation

- We need to know whether an action succeeded or failed
- Talking is an action!
- I need to know if my action succeeded
 - i.e. the hearer understood my turn!
Grounding

System: Did you want to review some more of your personal profile?
Caller: No.

System: What’s next?

System: Did you want to review some more of your personal profile?
Caller: No.

System: Okay, what’s next?
A real human-human conversation

C₁: ...I need to travel in May.
A₁: And, what day in May did you want to travel?
C₂: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A₂: And you’re flying into what city?
C₃: Seattle.
A₃: And what time would you like to leave Pittsburgh?
C₄: Uh hmm I don’t think there’s many options for non-stop.
A₄: Right. There’s three non-stops today.
C₅: What are they?
A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
C₆: OK I’ll take the 5ish flight on the night before on the 11th.
C₇: OK.
Grounding Examples (2)

Client: I need to travel in May

Agent: And, what day in May did you want to travel?
Confirmation

- Errors: Speech is an errorful channel
 - Humans use grounding to confirm that they heard correctly
 - ASR is worse than humans!
- Dialog systems need to do even more grounding and confirmation than humans
Explicit confirmation

S: Which city do you want to leave from?
U: Baltimore
S: Do you want to leave from Baltimore?
U: Yes
Explicit confirmation

U: I’d like to fly from Denver Colorado to New York City on September 21st in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York on September 21st. Is that correct?
U: Yes
Implicit confirmation

U: I’d like to travel to Berlin
S: When do you want to travel to Berlin?

U: Hi I’d like to fly to Seattle Tuesday morning
S: Traveling to Seattle on Tuesday, August eleventh in the morning. Your name?
Implicit vs. Explicit: Complementary strengths

Explicit:
- easier for users to correct system's mistakes (can just say "no")
- But long

Implicit:
- much more natural, quicker, simpler
- unless system guesses wrong
System: When would you like to leave?

Caller: Well, um, I need to be in New York in time for the first World Series game.

System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like to leave.

Caller: I wanna go on October fifteenth.
Algorithm for confirmation/rejection

- Speech recognition gives us a confidence value (how certain am I that I got the words right)

- $< \alpha$ low confidence reject
- $\geq \alpha$ above the threshold confirm explicitly
- $\geq \beta$ high confidence confirm implicitly
- $\geq \gamma$ very high confidence don’t confirm at all

- Might also consider cost of an error: Explicit confirmation before moving money or booking flights
Summary

- **State of the art:**
 - **Chatbots:**
 - Simple rule-based systems
 - IR or Neural networks: mine datasets of conversations.
 - **Frame-based systems:**
 - hand-written rules for slot fillers
 - ML classifiers to fill slots
- **What’s the future?**
 - **Key direction:** Integrating goal-based and chatbot-based systems