Vector Semantics
Why vector models of meaning? computing the similarity between words

“fast” is similar to “rapid”
“tall” is similar to “height”

Question answering:

Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”
Word similarity for plagiarism detection

MAINFRAMES

Mainframes are primarily referred to large computers with rapid, advanced processing capabilities that can execute and perform tasks equivalent to many Personal Computers (PCs) machines networked together. It is characterized with high quantity Random Access Memory (RAM), very large secondary storage devices, and high-speed processors to cater for the needs of the computers under its service.

Consisting of advanced components, mainframes have the capability of running multiple large applications required by many and most enterprises and organizations. This is one of its advantages. Mainframes are also suitable to cater for those applications (programs) or files that are of very high demand.

MAINFRAMES

Mainframes usually are referred those computers with fast, advanced processing capabilities that could perform by itself tasks that may require a lot of Personal Computers (PC) Machines. Usually mainframes would have lots of RAMs, very large secondary storage devices, and very fast processors to cater for the needs of those computers under its service.

Due to the advanced components mainframes have, these computers have the capability of running multiple large applications required by most enterprises, which is one of its advantage. Mainframes are also suitable to cater for those applications or files that are of very large demand.
Word similarity for historical linguistics: semantic change over time

Sagi, Kaufmann Clark 2013

Kulkarni, Al-Rfou, Perozzi, Skiena 2015
Distributional models of meaning = vector-space models of meaning = vector semantics

Intuitions: Zellig Harris (1954):
- “oculist and eye-doctor ... occur in almost the same environments”
- “If A and B have almost identical environments we say that they are synonyms.”

Firth (1957):
- “You shall know a word by the company it keeps!”
Intuition of distributional word similarity

• Nida example:

 A bottle of *tesgüino* is on the table
 Everybody likes *tesgüino*
 Tesgüino makes you drunk
 We make *tesgüino* out of corn.

• From context words humans can guess *tesgüino* means
 • an alcoholic beverage like *beer*

• Intuition for algorithm:
 • Two words are similar if they have similar word contexts.
Four kinds of vector models

Sparse vector representations
 1. Mutual-information weighted word co-occurrence matrices

Dense vector representations:
 2. Singular value decomposition (and Latent Semantic Analysis)
 3. Neural-network-inspired models (skip-grams, CBOW)
 4. Brown clusters
Shared intuition

• Model the meaning of a word by “embedding” in a vector space.
• The meaning of a word is a vector of numbers
 • Vector models are also called “embeddings”.
• Contrast: word meaning is represented in many computational linguistic applications by a vocabulary index (“word number 545”)
• Old philosophy joke:
 Q: What’s the meaning of life?
 A: LIFE’
Reminder: Term-document matrix

- Each cell: count of term t in a document d: $tf_{t,d}$
- Each document is a count vector in \mathbb{N}^v: a column below

<table>
<thead>
<tr>
<th>Term</th>
<th>As You Like It</th>
<th>Twelfth Night</th>
<th>Julius Caesar</th>
<th>Henry V</th>
</tr>
</thead>
<tbody>
<tr>
<td>battle</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>soldier</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>fool</td>
<td>37</td>
<td>58</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>clown</td>
<td>6</td>
<td>117</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reminder: Term-document matrix

- Two documents are similar if their vectors are similar

<table>
<thead>
<tr>
<th>Term</th>
<th>As You Like It</th>
<th>Twelfth Night</th>
<th>Julius Caesar</th>
<th>Henry V</th>
</tr>
</thead>
<tbody>
<tr>
<td>battle</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>soldier</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>fool</td>
<td>37</td>
<td>58</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>clown</td>
<td>6</td>
<td>117</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The words in a term-document matrix

- Each word is a count vector in \mathbb{N}^D: a row below

<table>
<thead>
<tr>
<th>Word</th>
<th>As You Like It</th>
<th>Twelfth Night</th>
<th>Julius Caesar</th>
<th>Henry V</th>
</tr>
</thead>
<tbody>
<tr>
<td>battle</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>soldier</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>fool</td>
<td>37</td>
<td>58</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>clown</td>
<td>6</td>
<td>117</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The words in a term-document matrix

- Two **words** are similar if their vectors are similar

<table>
<thead>
<tr>
<th></th>
<th>As You Like It</th>
<th>Twelfth Night</th>
<th>Julius Caesar</th>
<th>Henry V</th>
</tr>
</thead>
<tbody>
<tr>
<td>battle</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>soldier</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>fool</td>
<td>37</td>
<td>58</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>clown</td>
<td>6</td>
<td>117</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Term-context matrix for word similarity

- Two **words** are similar in meaning if their context vectors are similar

<table>
<thead>
<tr>
<th></th>
<th>aardvark</th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The word-word or word-context matrix

• Instead of entire documents, use smaller contexts
 • Paragraph
 • Window of ± 4 words

• A word is now defined by a vector over counts of context words

• Instead of each vector being of length D

• Each vector is now of length $|V|$

• The word-word matrix is $|V| \times |V|$
sugar, a sliced lemon, a tablespoonful of their enjoyment. Cautiously she sampled her first well suited to programming on the digital for the purpose of gathering data and apricot pineapple computer information preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

<table>
<thead>
<tr>
<th></th>
<th>aardvark</th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Word-word matrix

• We showed only 4x6, but the real matrix is 50,000 x 50,000
 • So it’s very sparse
 • Most values are 0.
 • That’s OK, since there are lots of efficient algorithms for sparse matrices.

• The size of windows depends on your goals
 • The shorter the windows, the more **syntactic** the representation
 ± 1-3 very syntacticy
 • The longer the windows, the more **semantic** the representation
 ± 4-10 more semanticy
2 kinds of co-occurrence between 2 words

(Schütze and Pedersen, 1993)

• First-order co-occurrence (syntagmatic association):
 • They are typically nearby each other.
 • wrote is a first-order associate of book or poem.

• Second-order co-occurrence (paradigmatic association):
 • They have similar neighbors.
 • wrote is a second-order associate of words like said or remarked.
Vector Semantics

Positive Pointwise Mutual Information (PPMI)
Problem with raw counts

- Raw word frequency is not a great measure of association between words
 - It’s very skewed
 - “the” and “of” are very frequent, but maybe not the most discriminative
- We’d rather have a measure that asks whether a context word is particularly informative about the target word.
 - Positive Pointwise Mutual Information (PPMI)
Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$\text{PMI}(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$\text{PMI}(\text{word}_1, \text{word}_2) = \log_2 \frac{P(\text{word}_1, \text{word}_2)}{P(\text{word}_1)P(\text{word}_2)}$$
Positive Pointwise Mutual Information

- PMI ranges from $-\infty$ to $+\infty$
- But the negative values are problematic
 - Things are co-occurring less than we expect by chance
 - Unreliable without enormous corpora
 - Imagine w_1 and w_2 whose probability is each 10^{-6}
 - Hard to be sure $p(w_1, w_2)$ is significantly different than 10^{-12}
- Plus it’s not clear people are good at “unrelatedness”
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between $word_1$ and $word_2$:
 \[
 \text{PPMI}(word_1, word_2) = \max \left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)
 \]
Computing PPMI on a term-context matrix

- Matrix F with W rows (words) and C columns (contexts)
- f_{ij} is # of times w_i occurs in context c_j

\[
p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \quad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \quad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}
\]

\[
p_{mi,j} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}} \quad \text{ppmi}_{ij} = \begin{cases} p_{mi,j} & \text{if } p_{mi,j} > 0 \\ 0 & \text{otherwise} \end{cases}
\]
$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$

$\frac{p(w=\text{information},c=\text{data})}{p(w=\text{information},c=\text{data})} = \frac{6}{19} = .32$

$\frac{p(w=\text{information})}{p(w=\text{information})} = \frac{11}{19} = .58$

$\frac{p(c=\text{data})}{p(c=\text{data})} = \frac{7}{19} = .37$

$\frac{p(w,\text{context})}{p(w,\text{context})}$

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
<th>p(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>pineapple</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>digital</td>
<td>0.11</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>information</td>
<td>0.05</td>
<td>0.32</td>
<td>0.00</td>
<td>0.21</td>
<td>0.00</td>
<td>0.58</td>
</tr>
</tbody>
</table>

$\frac{p(\text{context})}{p(\text{context})}$

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.16</td>
<td>0.37</td>
<td>0.11</td>
<td>0.26</td>
<td>0.11</td>
</tr>
</tbody>
</table>
\[pmi_{ij} = \log_2 \frac{p_{ij}}{p_i p_j} \]

Table: \(p(w, \text{context}) \) and \(p(w) \)

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>pineapple</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>digital</td>
<td>0.11</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>information</td>
<td>0.05</td>
<td>0.32</td>
<td>0.00</td>
<td>0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>p(context)</td>
<td>0.16</td>
<td>0.37</td>
<td>0.11</td>
<td>0.26</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table: \(p(w, \text{context}) \)

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>-</td>
<td>-</td>
<td>2.25</td>
<td>-</td>
<td>2.25</td>
</tr>
<tr>
<td>pineapple</td>
<td>-</td>
<td>-</td>
<td>2.25</td>
<td>-</td>
<td>2.25</td>
</tr>
<tr>
<td>digital</td>
<td>1.66</td>
<td>0.00</td>
<td>-</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>information</td>
<td>0.00</td>
<td>0.57</td>
<td>-</td>
<td>0.47</td>
<td>-</td>
</tr>
</tbody>
</table>

- \(pmi(\text{information}, \text{data}) = \log_2 (0.32 / (0.37 \times 0.58)) = 0.58 \)

\((0.57 \text{ using full precision}) \)
Weighting PMI

• PMI is biased toward infrequent events
 • Very rare words have very high PMI values

• Two solutions:
 • Give rare words slightly higher probabilities
 • Use add-one smoothing (which has a similar effect)
Weighting PMI: Giving rare context words slightly higher probability

• Raise the context probabilities to $\alpha = 0.75$:

$$\text{PPMI}_\alpha(w, c) = \max\left(\log_2 \frac{P(w,c)}{P(w)P_\alpha(c)}, 0\right)$$

$$P_\alpha(c) = \frac{\text{count}(c)^\alpha}{\sum_c \text{count}(c)^\alpha}$$

• This helps because $P_\alpha(c) > P(c)$ for rare c

• Consider two events, $P(a) = .99$ and $P(b) = .01$

$$P_\alpha(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97 \quad P_\alpha(b) = \frac{.01^{.75}}{.01^{.75} + .01^{.75}} = .03$$
Use Laplace (add-1) smoothing
Add-2 Smoothed Count(w,context)

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>pineapple</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>digital</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>information</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

p(w,context) [add-2]

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>pineapple</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>digital</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>information</td>
<td>0.05</td>
<td>0.14</td>
<td>0.03</td>
<td>0.10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

p(w)

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>pineapple</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>digital</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>information</td>
<td>0.05</td>
<td>0.14</td>
<td>0.03</td>
<td>0.10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

p(context)

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.19</td>
<td>0.25</td>
<td>0.17</td>
<td>0.22</td>
<td>0.17</td>
</tr>
</tbody>
</table>
PPMI versus add-2 smoothed PPMI

PPMI(w,context)

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>-</td>
<td>-</td>
<td>2.25</td>
<td>-</td>
<td>2.25</td>
</tr>
<tr>
<td>pineapple</td>
<td>-</td>
<td>-</td>
<td>2.25</td>
<td>-</td>
<td>2.25</td>
</tr>
<tr>
<td>digital</td>
<td>1.66</td>
<td>0.00</td>
<td>-</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>information</td>
<td>0.00</td>
<td>0.57</td>
<td>-</td>
<td>0.47</td>
<td>-</td>
</tr>
</tbody>
</table>

PPMI(w,context) [add-2]

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>data</th>
<th>pinch</th>
<th>result</th>
<th>sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0.00</td>
<td>0.00</td>
<td>0.56</td>
<td>0.00</td>
<td>0.56</td>
</tr>
<tr>
<td>pineapple</td>
<td>0.00</td>
<td>0.00</td>
<td>0.56</td>
<td>0.00</td>
<td>0.56</td>
</tr>
<tr>
<td>digital</td>
<td>0.62</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>information</td>
<td>0.00</td>
<td>0.58</td>
<td>0.00</td>
<td>0.37</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Vector Semantics

Measuring similarity: the cosine
Measuring similarity

- Given 2 target words v and w
- We’ll need a way to measure their similarity.
- Most measure of vectors similarity are based on the:
- **Dot product** or **inner product** from linear algebra

\[
dot\text{-product}(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \ldots + v_N w_N
\]

- High when two vectors have large values in same dimensions.
- Low (in fact 0) for **orthogonal vectors** with zeros in complementary distribution
Problem with dot product

dot-product(\vec{v}, \vec{w}) = $\vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \ldots + v_N w_N$

- Dot product is longer if the vector is longer. Vector length:

$$|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

- Vectors are longer if they have higher values in each dimension
- That means more frequent words will have higher dot products
- That’s bad: we don’t want a similarity metric to be sensitive to word frequency
Solution: cosine

- Just divide the dot product by the length of the two vectors!
 \[\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \]
- This turns out to be the cosine of the angle between them!
 \[\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \cos \theta \]
Cosine for computing similarity

\[\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|} = \frac{\vec{v}}{\|\vec{v}\|} \cdot \frac{\vec{w}}{\|\vec{w}\|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} \]

\(v_i \) is the PPMI value for word \(v \) in context \(i \)

\(w_i \) is the PPMI value for word \(w \) in context \(i \).

\(\text{Cos}(\vec{v}, \vec{w}) \) is the cosine similarity of \(\vec{v} \) and \(\vec{w} \)
Cosine as a similarity metric

-1: vectors point in opposite directions
+1: vectors point in same directions
0: vectors are orthogonal

• Raw frequency or PPMI are non-negative, so cosine range 0-1
\[
\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}
\]

Which pair of words is more similar?

\[
\cosine(\text{apricot, information}) = \frac{2 + 0 + 0}{\sqrt{2 + 0 + 0} \sqrt{1 + 36 + 1}} = \frac{2}{\sqrt{2} \sqrt{38}} = 0.23
\]

\[
\cosine(\text{digital, information}) = \frac{0 + 6 + 2}{\sqrt{0 + 1 + 4} \sqrt{1 + 36 + 1}} = \frac{8}{\sqrt{38} \sqrt{5}} = 0.58
\]

\[
\cosine(\text{apricot, digital}) = \frac{0 + 0 + 0}{\sqrt{1 + 0 + 0} \sqrt{0 + 1 + 4}} = 0
\]

<table>
<thead>
<tr>
<th></th>
<th>large</th>
<th>data</th>
<th>computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>information</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Visualizing vectors and angles

Dimension 1: ‘large’

Dimension 2: ‘data’

<table>
<thead>
<tr>
<th></th>
<th>large</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>information</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Clustering vectors to visualize similarity in co-occurrence matrices

Rohde et al. (2006)
Other possible similarity measures

\[\text{sim}_{\text{cosine}}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} \]

\[\text{sim}_{\text{Jaccard}}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)} \]

\[\text{sim}_{\text{Dice}}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)} \]

\[\text{sim}_{\text{JS}}(\vec{v} \mid \vec{w}) = D(\vec{v} \mid \frac{\vec{v} + \vec{w}}{2}) + D(\vec{w} \mid \frac{\vec{v} + \vec{w}}{2}) \]
Vector Semantics

Measuring similarity: the cosine
Using syntax to define a word’s context

• Zellig Harris (1968)
 “The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities”

• Two words are similar if they have similar syntactic contexts

Duty and responsibility have similar syntactic distribution:

<table>
<thead>
<tr>
<th>Modified by adjectives</th>
<th>additional, administrative, assumed, collective, congressional, constitutional ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects of verbs</td>
<td>assert, assign, assume, attend to, avoid, become, breach...</td>
</tr>
</tbody>
</table>
Co-occurrence vectors based on syntactic dependencies

Dekang Lin, 1998 “Automatic Retrieval and Clustering of Similar Words”

- Each dimension: a context word in one of R grammatical relations
 - Subject-of- “absorb”
- Instead of a vector of $|V|$ features, a vector of $R/|V|$
- Example: counts for the word cell:

<table>
<thead>
<tr>
<th></th>
<th>subj-of, absorb</th>
<th>subj-of, adapt</th>
<th>subj-of, behave</th>
<th>...</th>
<th>obj-of, inside</th>
<th>obj-of, into</th>
<th>...</th>
<th>nmod-of, abnormality</th>
<th>nmod-of, anemia</th>
<th>...</th>
<th>nmod-of, architecture</th>
<th>obj-of, attack</th>
<th>obj-of, call</th>
<th>obj-of, come from</th>
<th>obj-of, decorate</th>
<th>...</th>
<th>nmod, bacteria</th>
<th>nmod, body</th>
<th>nmod, bone marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>16</td>
<td>30</td>
<td>...</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syntactic dependencies for dimensions

• Alternative (Padó and Lapata 2007):

 • Instead of having a $|V| \times R|V|$ matrix
 • Have a $|V| \times |V|$ matrix
 • But the co-occurrence counts aren’t just counts of words in a window
 • But counts of words that occur in one of R dependencies (subject, object, etc).
 • So $M(“cell”,“absorb”) = \text{count}(\text{subj}(\text{cell,absorb})) + \text{count}(\text{obj}(\text{cell,absorb})) + \text{count}(\text{pobj}(\text{cell,absorb})), \text{ etc.}$
PMI applied to dependency relations

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

<table>
<thead>
<tr>
<th>Object of “drink”</th>
<th>Count</th>
<th>PMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>tea</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>liquid</td>
<td>2</td>
<td>10.5</td>
</tr>
<tr>
<td>wine</td>
<td>2</td>
<td>9.3</td>
</tr>
<tr>
<td>anything</td>
<td>3</td>
<td>5.2</td>
</tr>
<tr>
<td>it</td>
<td>3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- “Drink it” more common than “drink wine”
- But “wine” is a better “drinkable” thing than “it”
Alternative to PPMI for measuring association

- **tf-idf** (that’s a hyphen not a minus sign)
- The combination of two factors
 - **Term frequency** (Luhn 1957): frequency of the word (can be logged)
 - **Inverse document frequency** (IDF) (Sparck Jones 1972)
 - N is the total number of documents
 - df_i = “document frequency of word i”
 - $= \# \text{ of documents with word } i$
 - $w_{ij} = \text{word } i \text{ in document } j$
 - $w_{ij} = tf_{ij} \cdot idf_i$
tf-idf not generally used for word-word similarity

• But is by far the most common weighting when we are considering the relationship of words to documents
Vector Semantics

Dense Vectors
Sparse versus dense vectors

- PPMI vectors are
 - long (length $|V| = 20,000$ to $50,000$)
 - sparse (most elements are zero)
- Alternative: learn vectors which are
 - short (length 200-1000)
 - dense (most elements are non-zero)
Sparse versus dense vectors

• Why dense vectors?
 • Short vectors may be easier to use as features in machine learning (less weights to tune)
 • Dense vectors may generalize better than storing explicit counts
 • They may do better at capturing synonymy:
 • car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor
Three methods for getting short dense vectors

- Singular Value Decomposition (SVD)
 - A special case of this is called LSA – Latent Semantic Analysis
- “Neural Language Model”-inspired predictive models
 - skip-grams and CBOW
- Brown clustering
Vector Semantics

Evaluating similarity
Evaluating similarity

• **Extrinsic (task-based, end-to-end) Evaluation:**
 - Question Answering
 - Spell Checking
 - Essay grading

• **Intrinsic Evaluation:**
 - Correlation between algorithm and human word similarity ratings
 - Wordsim353: 353 noun pairs rated 0-10. \(\text{sim}(\text{plane},\text{car})=5.77 \)
 - Taking TOEFL multiple-choice vocabulary tests
 - **Levied** is closest in meaning to: imposed, believed, requested, correlated
Summary

• Distributional (vector) models of meaning
 • Sparse (PPMI-weighted word-word co-occurrence matrices)
 • Dense:
 • Word-word SVD 50-2000 dimensions
 • Skip-grams and CBOW
 • Brown clusters 5-20 binary dimensions.
The remaining material is optional and won’t be on the final exam.
Vector Semantics

Dense Vectors via SVD
Intuition

• Approximate an N-dimensional dataset using fewer dimensions
• By first rotating the axes into a new space
• In which the highest order dimension captures the most variance in the original dataset
• And the next dimension captures the next most variance, etc.
• Many such (related) methods:
 • PCA – principle components analysis
 • Factor Analysis
 • SVD
Dimensionality reduction

PCA dimension 1

PCA dimension 2
Singular Value Decomposition

Any rectangular $w \times c$ matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a dimension in a new latent space, such that

- M column vectors are orthogonal to each other
- Columns are ordered by the amount of variance in the dataset each new dimension accounts for

S: diagonal $m \times m$ matrix of **singular values** expressing the importance of each dimension.

C: columns corresponding to original but m rows corresponding to singular values
Singular Value Decomposition

$$X = W S C$$

where X is the matrix of words, W is the matrix of contexts, S is the diagonal matrix of singular values, and C is the matrix of singular vectors.

Landauer and Dumais 1997
SVD applied to term-document matrix: Latent Semantic Analysis

Deerwester et al (1988)

- If instead of keeping all m dimensions, we just keep the top k singular values. Let’s say 300.
- The result is a least-squares approximation to the original X.
- But instead of multiplying, we’ll just make use of W.
- Each row of W:
 - A k-dimensional vector
 - Representing word W.
LSA more details

• 300 dimensions are commonly used

• The cells are commonly weighted by a product of two weights
 • Local weight: Log term frequency
 • Global weight: either idf or an entropy measure
Let’s return to PPMI word-word matrices

- Can we apply to SVD to them?
SVD applied to term-term matrix

\[
\begin{bmatrix}
 X \\
 \vert V \vert \times \vert V \vert
\end{bmatrix} = \begin{bmatrix}
 W \\
 \vert V \vert \times \vert V \vert
\end{bmatrix} \begin{bmatrix}
 \sigma_1 & 0 & 0 & \ldots & 0 \\
 0 & \sigma_2 & 0 & \ldots & 0 \\
 0 & 0 & \sigma_3 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \ldots & \sigma_{V}
\end{bmatrix} \begin{bmatrix}
 C \\
 \vert V \vert \times \vert V \vert
\end{bmatrix}
\]

(I’m simplifying here by assuming the matrix has rank \(\vert V \vert \))
Truncated SVD on term-term matrix

\[
\begin{bmatrix}
X \\
|V| \times |V|
\end{bmatrix}
=
\begin{bmatrix}
W \\
|V| \times k
\end{bmatrix}
\begin{bmatrix}
\sigma_1 & 0 & 0 & \ldots & 0 \\
0 & \sigma_2 & 0 & \ldots & 0 \\
0 & 0 & \sigma_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \sigma_k
\end{bmatrix}
\begin{bmatrix}
C \\
k \times |V|
\end{bmatrix}
\]
Truncated SVD produces embeddings

- Each row of W matrix is a k-dimensional representation of each word w
- K might range from 50 to 1000
- Generally we keep the top k dimensions, but some experiments suggest that getting rid of the top 1 dimension or even the top 50 dimensions is helpful (Lapesa and Evert 2014).
Embeddings versus sparse vectors

• Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks like word similarity
 • Denoising: low-order dimensions may represent unimportant information
 • Truncation may help the models generalize better to unseen data.
 • Having a smaller number of dimensions may make it easier for classifiers to properly weight the dimensions for the task.
 • Dense models may do better at capturing higher order co-occurrence.
Vector Semantics

Embeddings inspired by neural language models: skip-grams and CBOW
Prediction-based models: An alternative way to get dense vectors

- **Skip-gram** (Mikolov et al. 2013a) **CBOB** (Mikolov et al. 2013b)
- Learn embeddings as part of the process of word prediction.
- Train a neural network to predict neighboring words
 - Inspired by **neural net language models**.
 - In so doing, learn dense embeddings for the words in the training corpus.
- **Advantages**:
 - Fast, easy to train (much faster than SVD)
 - Available online in the **word2vec** package
 - Including sets of pretrained embeddings!
Skip-grams

- Predict each neighboring word
 - in a context window of $2C$ words
 - from the current word.
- So for $C=2$, we are given word w_t and predicting these 4 words:

$$[w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}]$$
Skip-grams learn 2 embeddings for each \(w \)

input embedding \(v \), in the input matrix \(W \)
- Column \(i \) of the input matrix \(W \) is the \(1 \times d \) embedding \(v_i \) for word \(i \) in the vocabulary.

output embedding \(v' \), in output matrix \(W' \)
- Row \(i \) of the output matrix \(W' \) is a \(d \times 1 \) vector embedding \(v'_i \) for word \(i \) in the vocabulary.
Setup

• Walking through corpus pointing at word \(w(t) \), whose index in the vocabulary is \(j \), so we’ll call it \(w_j \) \((1 < j < |V|)\).

• Let’s predict \(w(t+1) \), whose index in the vocabulary is \(k \) \((1 < k < |V|)\). Hence our task is to compute \(P(w_k|w_j) \).
One-hot vectors

• A vector of length $|V|$
• 1 for the target word and 0 for other words
• So if “popsicle” is vocabulary word 5
• The **one-hot vector** is
• $[0,0,0,0,1,0,0,0,0......0]$
Skip-gram

Input layer
- 1-hot input vector
- \(w_t \)
 - \(x_1 \)
 - \(x_2 \)
 - \(\ldots \)
 - \(x_j \)
 - \(\ldots \)
 - \(x_{|V|} \)

Projection layer
- Embedding for \(w_t \)
- \(W \) \(|V| \times d \)

Output layer
- Probabilities of context words
- \(W' \) \(d \times |V| \)
- \(W' \) \(d \times |V| \)
- \(y_1 \)
- \(y_2 \)
- \(\ldots \)
- \(y_k \)
- \(\ldots \)
- \(y_{|V|} \)
- \(w_{t-1} \)
- \(w_{t+1} \)

\[W = \begin{pmatrix} x_1 & x_2 & \ldots & x_j & \ldots & x_{|V|} \end{pmatrix} \]

\[W' = \begin{pmatrix} y_1 & y_2 & \ldots & y_k & \ldots & y_{|V|} \end{pmatrix} \]
Skip-gram

Input layer
1-hot input vector

Projection layer
embedding for w_t

Output layer
probabilities of context words

$h = v_j$

$W \times |V|$

$W' \times |V|$
Skip-gram

\[h = v_j \]

Input layer
1-hot input vector

Projection layer
embedding for \(w_t \)

Output layer
probabilities of context words

\[o = W'h \]
\[o_k = v'_k h \]
\[o_k = v'_k \cdot v_j \]
Turning outputs into probabilities

- $O_k = V'_k \cdot V_j$
- We use softmax to turn into probabilities

$$p(w_k|w_j) = \frac{exp(v'_k \cdot v_j)}{\sum_{w' \in |V|} exp(v'_{w} \cdot v_j)}$$
Embeddings from W and W’

• Since we have two embeddings, v_j and v'_j for each word w_j
• We can either:
 • Just use v_j
 • Sum them
 • Concatenate them to make a double-length embedding
But wait; how do we learn the embeddings?

\[
\begin{align*}
\arg\max_{\theta} \ & \ \log p(\text{Text}) \\
\arg\max_{\theta} \ & \ \log \prod_{t=1}^{T} p(w^{(t-C)}, \ldots, w^{(t-1)}, w^{(t+1)}, \ldots, w^{(t+C)}) \\
\arg\max_{\theta} \ & \ \sum_{-c \leq j \leq c, j \neq 0} \log p(w^{(t+j)} | w^{(t)}) \\
= & \ \arg\max_{\theta} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log \frac{\exp(v^{(t+j)} \cdot v^{(t)})}{\sum_{w \in |V|} \exp(v'_w \cdot v^{(t)})} \\
= & \ \arg\max_{\theta} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \left[v^{(t+j)} \cdot v^{(t)} - \log \sum_{w \in |V|} \exp(v'_w \cdot v^{(t)}) \right]
\end{align*}
\]
Relation between skipgrams and PMI!

- If we multiply WW'^T
- We get a $|V| \times |V|$ matrix M, each entry m_{ij} corresponding to some association between input word i and output word j
- Levy and Goldberg (2014b) show that skip-gram reaches its optimum just when this matrix is a shifted version of PMI:
 \[WW'^T = M^{\text{PMI}} - \log k \]
- So skip-gram is implicitly factoring a shifted version of the PMI matrix into the two embedding matrices.
CBOW (Continuous Bag of Words)

Input layer
1-hot input vectors for each context word

Projection layer
sum of embeddings for context words

Output layer
probability of w_t

- w_{t-1}
- w_t
- w_{t+1}

$W: |V| \times d$

$W': d \times |V|$

$W'_{d \times |V|}$

$1 \times |V|$
Properties of embeddings

- Nearest words to some embeddings (Mikolov et al. 2013a)

<table>
<thead>
<tr>
<th>target:</th>
<th>Redmond</th>
<th>Havel</th>
<th>ninjitsu</th>
<th>graffiti</th>
<th>capitulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redmond Wash.</td>
<td>Vaclav Havel</td>
<td>ninja</td>
<td>spray paint</td>
<td>capitation</td>
<td></td>
</tr>
<tr>
<td>Redmond Washington</td>
<td>president Vaclav Havel</td>
<td>martial arts</td>
<td>grafitti</td>
<td>capitated</td>
<td></td>
</tr>
<tr>
<td>Microsoft</td>
<td>Velvet Revolution</td>
<td>swordsmanship</td>
<td>taggers</td>
<td>capitulating</td>
<td></td>
</tr>
</tbody>
</table>

One semantic property of various kinds of embeddings that may play in their usefulness is their ability to capture relational meanings. Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings can capture some relations between words, for example that the result of the expression vector('king') - vector('man') + vector('woman') is a vector close to vector('queen'); the left panel in Fig. 17.15 visualizes this by projecting a representation down into 2 dimensions. Similarly, they found that the expression vector('Paris') - vector('France') + vector('Italy') results in a vector that is very close to vector('Rome'). Levy and Goldberg (2014a) shows that various other kinds of embeddings also seem to have this property. We return in the next section to these relational properties of embeddings and how they relate to meaning compositional: the way the meaning of a phrase is built up out of the meaning of the individual vectors.

19.6 Compositionality in Vector Models of Meaning
To be written.
Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) \approx vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) \approx vector(‘Rome’)

82
Vector Semantics

Brown clustering
Brown clustering

• An agglomerative clustering algorithm that clusters words based on which words precede or follow them
• These word clusters can be turned into a kind of vector
• We’ll give a very brief sketch here.
Brown clustering algorithm

- Each word is initially assigned to its own cluster.
- We now consider merging each pair of clusters. Highest quality merge is chosen.
 - Quality = merges two words that have similar probabilities of preceding and following words
 - (More technically quality = smallest decrease in the likelihood of the corpus according to a class-based language model)
- Clustering proceeds until all words are in one big cluster.
Brown Clusters as vectors

• By tracing the order in which clusters are merged, the model builds a binary tree from bottom to top.
• Each word represented by binary string = path from root to leaf
• Each intermediate node is a cluster
• Chairman is 0010, “months” = 01, and verbs = 1
Brown cluster examples

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays June March July April January December October November September August pressure temperature permeability density porosity stress velocity viscosity gravity tension anyone someone anybody somebody had hadn’t hath would’ve could’ve should’ve might’ve asking telling wondering instructing informing kidding reminding bothering thanking deposing mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift
Class-based language model

- Suppose each word was in some class c_i:

$$P(w_i | w_{i-1}) = P(c_i | c_{i-1}) P(w_i | c_i)$$

$$P(\text{corpus} | C) = \prod_{i=1}^{n} P(c_i | c_{i-1}) P(w_i | c_i)$$