Future Web App
Technologies

Mendel Rosenblum

MERN software stack

e React,js

o Browser-side JavaScript framework - Only View/controller parts
o Javascript/CSS with HTML templates embedded (JSX)
o Unopinionated: leaves much SPA support to 3rd parties - routing, model fetching, etc.

Node.js / Express.js web server code

o Server side JavaScript
o High "concurrency" with single-thread event-based programming

e MongoDB "document" storage
o Store frontend model data
o Storage system support scale out (sharing and replication), queries, indexes

e Commonly listed alternatives: Angular(2) and Vue.js

CS142 Lecture Notes - FutureWebAppTech

Angular (AngulardS Version 2)

e \Very different from AngularJS (First version of Angular)
o Doubled down on the AngularJS Directive abstraction - focus reusable components

e Components written in extended Typescript (ES6 + Typescript + annotations)
o Got rid of AngularJS scopes, controllers, two-way binding
o Directives are components with a HTML template and corresponding controller code

e Similar architecture to ReactdS
o Faster rendering and can support server-side rendering

e Vue.js - Done by former AngulardS developer, community supported

o Similar component architecture
o Mostly big companies in China

CS142 Lecture Notes - FutureWebAppTech

Current generation: React.js, Angular, Vue.js

e Common approach: Run in browser, component building blocks, etc.
o Asign the area is maturing?

e Specification using traditional web programming languages
o Advanced JavaScript - Babel
o Templated HTML
o CSS for layout (e.g. grid) and styling

e Decoupling from the browser's DOM with a Virtual DOM

CS142 Lecture Notes - FutureWebAppTech

Virtual DOM

e Component render() functions results are places in a Virtual DOM
o Optimized one-way binding process
m Only components whose props or state change are updated
o Much faster access than the real DOM

e Efficiently pushes the Virtual DOM to the Browser's DOM
o Only the parts of the Browser's DOM that change are updated

e Decoupling from the browser DOM enabled component use other places
o Server-side rendering
o Native client

CS142 Lecture Notes - FutureWebAppTech

React.js and the future of Web Apps

e Choice of describing Ul using HTML/CSS/JavaScript is surprising

e |arge advantage to be on the dominate platform
o Available components

e React.js used of JSX embedded in Javascript is problematic
o Lots of gotchas when learning (this, iteration, etc.)
o Loses ability to use compiler technology on templates (e.g. Svelte)
m Declarative languages are more popular this days

CS142 Lecture Notes - FutureWebAppTech

https://svelte.dev/

State management

e Reactive programming paradigm

e Example: Redux - A Predictable State Container for JS Apps
o Put all web app browser state in a common abstraction: a state store
o Allinputs (user, network, components, etc.) go into store
o Components get their inputs from the store
o Eases support for offline operation

e Example: Relay - The production-ready GraphQL client for React
o Model fetching and caching using Graphql - local state store
o Specify as part of React.js component - render method specifies model data query
o Uses compiler to bunch together all component queries into a single GraphQL query to
backend

CS142 Lecture Notes - FutureWebAppTech

Browser extension: ServiceWorker

e Use browser "service workers" to cache web application

o JavaScript Web Workers - JavaScript extension to run code in background
m Runs isolated but in parallel with the other JavaScript
m Communicate with using postMessage/events
m Can stick around after web app exits

o Network proxy that allows worker to interpose on web app's request to web server

o Cache - storage mechanism for Request / Response object pairs
m Store contents of web app request/responses so they can replayed without backend

e Supports:
o Super fast web app startup - All components and even model data already in the web app
o Offline operation - Can run out out of the server worker cache

CS142 Lecture Notes - FutureWebAppTech

Progressive Web Applications

e Leverage ServiceWorkers to get native app characteristics

(@)

Fast startup, view switching, and offline support

e Lots of other web app niceties rolled in

(@)

o O O O O O

HTTPS support for protection

Responsive design for different size displays
Deep linking

Push notifications

Google search support

Cross-browser

Etc.

CS142 Lecture Notes - FutureWebAppTech

Browser extension: Web Assembly

e \Web Assembly (Wasm) -

o Binary instruction format for a stack-based virtual machine
o Portable target for compilation of high-level languages like C/C++/Rust/Go etc
o Uses a just-in-time compiler to native instructions

e Runs in isolated environment in parallel with JavaScript
o Like JavaScript Web Workers except with near-native CPU performance

e Allows performance critical legacy code to run in browser
o Example: Game engines

CS142 Lecture Notes - FutureWebAppTech

Web App programming is being used all over

e Mobile environments (iOS and Android)
o React Native - Supports using React components
o lonic - Supports using Angular, React, or Vue

e Desktop environments
o Electron - Build cross platform desktop apps with JavaScript, HTML, and CSS
m Extend Node.js with browser functionality (chromium)
m Example app: Atom - A hackable text editor for the 21st Century
o lonic

CS142 Lecture Notes - FutureWebAppTech

https://ionicframework.com/
https://electronjs.org/
https://www.chromium.org/
https://atom.io/

Web Apps versus Native Apps

e Web Apps advantages:
o Available on all platforms - Smaller, faster development
o Easy "update" of application
o Customize application per user

e Native apps
o Native look and feel user interface
o Integrate with host platform - special devices and services

e Backend can be largely the same for both - (e.g. REST/GraphQL/RPC APIs)
o Need legacy support

CS142 Lecture Notes - FutureWebAppTech

Web Servers

e Express.js functionality
o Code handlers to process requests from clients
o Routing URLs/verbs to handlers
o Middleware for common processing

e Functionality pretty fundamental
o Alternatives basically use the same functions just different languages
o Callbacks vs threads is a big difference

CS142 Lecture Notes - FutureWebAppTech

Node.js criticisms

e Callback hell - TJ Holowaychuk's why Node sucks:
you may get duplicate callbacks

you may not get a callback at all (lost in limbo)

you may get out-of-band errors

emitters may get multiple “error” events

missing “error” events sends everything to hell

often unsure what requires “error” handlers

“error” handlers are very verbose

callbacks suck

© N Ok DN~

e JavaScript lack of typing checking - Can use Typescript now.
e Concurrency support (e.g. crypto operations) & Performance overheads

e Node.js V2 - Deno - TypeScript and smaller trusted computing base
CS142 Lecture Notes - FutureWebAppTech

Go Language

e System programming language released in 2007 by Google
o Done by original Unix authors (Reacting to complexity of C++/Java and Python at scale)
o From Wikipedia:

A compiled, statically typed language ..., with garbage collection,
memory safety features and CSP-style concurrent programming ...

e Cross C & scripting languages
o Productive and readable programs
o C-like but got rid of unnecessary punctuations
o Super fast compiler

CS142 Lecture Notes - FutureWebAppTech

https://en.wikipedia.org/wiki/Communicating_sequential_processes

Go language features

Like dynamic languages, types are inferred

intVar := 3;
stringVar :

"Hello World";

Functions can return multiple values

func vals() (int, int) {
return 3, 7

}
a, b := vals()

e Common pattern: return result, err

CS142 Lecture Notes - FutureWebAppTech

Go language features

e Can declare types and allocate instances

type person struct {
name string
age int

}

s := person{name: "Sean", age: 50}

e Automatic memory management using garbage collection

CS142 Lecture Notes - FutureWebAppTech

Go concurrency - threads

e goroutine is a lightweight thread of execution

go processRequest(request);
e Encourages using tons of threads. Example: per request threads

e Has channels for synchronization

messages := make (chan string)
go func () { messages <- "ping" 1} ()
msg := <-messages

o Also locks for mutual exclusion

CS142 Lecture Notes - FutureWebAppTech

MongoDB criticisms

e Lots - Pretty lame database
o Loses data, doesn't scale well
o Large space overheads for objects and indexes
o Query language: Not SQL?

e Many other databases
o Cloud storage offerings are getting better
o Example: Spanner (Globally consistent, scalable, SQL database)

e Open source infrastructure company in a SaaS world

CS142 Lecture Notes - FutureWebAppTech

Alternatives to building your own backend

e Frontend centric: Model storage approach
o Firebase
m Develop your web app (MVC) and store models in the cloud services
m Pushes new models to the web app when things change
m Example sweet spot: Top scorer list for a game

e Backend centric: Schema driven approach

o Describe data of application
o Auto generate schema and front-end code
m Limited to form-like interface

e \arious systems that promises to take a specification of your web app and
deliver it

CS142 Lecture Notes - FutureWebAppTech

Full stack engineering

e Tall order to fill
o Make pretty web pages by mastering HTML and CSS
o Architecture scalable web service
o Layout storage system system sharding, schema, and indexes

e Typically people specialize
o The expertin CSS is different than expert in database schema is different from the ops team

CS142 Lecture Notes - FutureWebAppTech

Looking to the future

e Cloud providers will offer a platform that most web applications can just build
off

o Llke people don't write their own operating system anymore.
o Technologies and app demands have been changing so much we still in the roll your own
phase.

e Pieces are coming together
o World-wide scalable, reliability, available storage systems (e.g. Google's spanner)
o Serverless computing platforms (e.g. Amazon Lambda)
o Cloud services - Pub/sub, analytics, speech recognition, machine learning, etc.

CS142 Lecture Notes - FutureWebAppTech

Example Cloud Offering: Google Firebase

e Client library for most app platforms (web, ios, android, etc.)
o App focus - No backend programming

e Storage
o Realtime Database - Shared JSON blob (noSQL) with watches and protection
m Client directly queries database (no web servers needed)
o Cloud Storage - Blob storage for bigger things like files
m Use for unstructured data you don't want to encode into JSON in the realtime database

e Authentication - Let users login
o Supports accounts/passwords, Google, Facebook, OAUTH, etc.

CS142 Lecture Notes - FutureWebAppTech

Google Firebase (continued)

e Hosting
o Global content distribution network (CDN)
m Distribute read-only parts (e.g. HTML, CSS, JavaScript) with low-latency
o Remote Config - Distribute different versions
m A/B testing, customize versions
o Cloud Function - Serverless computing - Triggers on network or storage events
m Allows for backend functionality without needing servers

e Application monitor - Provides a dashboard
o Google Analytics - Track application usage (e.g which routes, etc.)
o Performance Monitoring - Track request timings, etc.
o Crash reporting - Upload information about failures
o Crashlytics - Classify crashes and provide alerts

CS142 Lecture Notes - FutureWebAppTech

Google Firebase (continued)

e User Communication
o Cloud Messaging - Send messages or notifications to app users
o Invites - Allow users to point other users at your app

e Dynamic Links - Deep linking support

o Direct users to native mode apps

e Google Integration

o Admob - Show ads in your app
o Adwords - Advertise your app on Google
o App Indexing - Have your app show up in Google Search

CS142 Lecture Notes - FutureWebAppTech

Cloud offerings

e Everything is an Application Programming Interface (API)

o REST commonly used

e Language Translation

e Information extraction services:
o Video Analysis
o Speech Analysis
o Text Analysis

e Conversational user interface support (e.g chatbot)

CS142 Lecture Notes - FutureWebAppTech

Trending Web App Frameworks - CS1427?

e View - JavaScript/TypeScript/CSS or Native app
o React.js, Angular (2), Vue.js
m View-only: Components packaging HTML/Templates

e State Management
o Reactive programming / Observable pattern
o Becoming similar to old distributed system consistency issues

e Backend communication - Graphgl vs REST vs gRPC
e Backend - Serverless, perhaps Go language, Microservices
e Storage - SQL query language - relational-like database

CS142 Lecture Notes - FutureWebAppTech

