
CS143 Final
Spring 2021

• Please read all instructions (including these) carefully.

• There are 5 questions on the exam + the honor code, some with multiple parts. You have
95 minutes to both finish the exam and upload it. After 95 minutes, gradescope will close
your exam and automatically submit it, so make sure to submit what you have by then.

• The exam is open note. You may use laptops, phones, e-readers, and the internet, but
you may not consult anyone.

• You must upload your answers to gradescope and tag each question, just like the written
assignments. You may submit images of hand-written answers taken with your phone
(but allow yourself time to send the image to your computer, so you can upload it to
gradescope). It is your responsibility, however, to ensure they are legible. Computer
typed answers as a PDF are also permitted.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

Problem Max points Points

1 Honor Code
2 20
3 10
4 25
5 25
6 20

TOTAL 100

1. In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

Type your name as a signature below:

2. Register Allocation

Consider the following control-flow graph (CFG) where no variables are live on exit:

a = 1

b = 2
d = a + b

c = 3
d = a + c

e = d + d

f = b + e f = c + e

f = e + f

(a) Run the algorithm for building register inference graphs from the lectures on the
CFG and draw the resulting register inference graph.

Answer:

(b) Run the register allocation algorithm from the lectures on the CFG, removing nodes
with the least degree first and breaking ties alphabetically. Show the stack after it
is filled with all nodes and also show the assignment of variables to registers.

Answer:

Stack (bottom to top): f, a, d, b, c, e

Assignment:
e: r0
c: r1
b: r2
d: r0
a: r0
f: r1

(c) Assume that using an uninitialized variable is undefined behavior in the programming
language of the CFG. Thus, the compiler need not preserve correctness for program
paths where variables are used before their initialization. Taking advantage of this
observation, provide an assignment of variables to registers that uses the fewest
possible number of registers.

Answer:

By taking advantage of the additional assumption, we need only 2 registers.

Assignment:
a: r0
b: r1
c: r1
d: r0
e: r0
f: r1

3. Dataflow Analysis

Consider the following basic blocks where live variables are listed in curly brackets before
and after statements. The basic blocks form a CFG where the edges are missing. No
variables are live on exit from the CFG. (We have given the blocks labels in their upper
left corners for your convenience.)

a = c

{c}

{a,c}

b = 1

{a,b,c}

c = d

{d}

{c}

d = c

{c}

c = a

{a,b}

{b}

d = b

{d}

b = c

{c}

{ }

d = 1

{d}

1 2 3 4

Provide the missing control flow graph edges.

Answer:

There are multiple solutions, one of which is given below. No variables are live on exit,
so every solution known to us needs a back-edge that makes c live on exit from 3.

c = a

{a,b}

{b}

d = b

{d}

1

a = c

{c}

{a,c}

b = 1

{a,b,c}

2

c = d

{d}

{c}

d = c

{c}

3

b = c

{c}

{ }

d = 1

{d}

4

4. Cool Refactoring

In this question, we will change the semantics of two Cool constructs and ask for new
type inference rules, operational semantic rules, or both.

(a) We will change the type of a Cool if-then-else expression

if e0 then e1 : T1 else e2 : T2 fi

to be either the type of the then expression (T1) or the type of the else expression
(T2), whichever is a superclass of the other. If neither T1 ≤ T2 nor T2 ≤ T1, then
the expression does not type check. Provide the type inference rule or rules that
describes the new if-then-else semantics. You may not redefine lub or ≤, nor define
a new function.

Answer:
1. (a)

O, M, C ` e1 : Bool
O, M, C ` e1 : T1

O, M, C ` e2 : T2

T 0
1 =

(
SELF TYPEc if T1 = SELF TYPE

T1 Otherwise

T 0
2 =

(
SELF TYPEc if T2 = SELF TYPE

T2 Otherwise

T 0
1 0 T 0

2 _ T 0
2  T 0

1

O, M, C ` if e1 then e2 else e3 fi : T 0
1 t T 0

2

Note SELF TYPEc t T = C t T and S  T =) T t S = T .
So T 0

1 t T 0
2 = T 0

1 or T 0
1 t T 0

2 = T 0
2.

(b)

O, M, C ` e1 : Bool
O, M, C ` e2 : T2

O, M, C ` while e1 loop e2 pool : T2

Unfortunately there is no truly satisfactory answer within the formalism we have. The
following is close. We throw away the side e↵ect on the store caused by evaluating e1

twice, however, there might be side e↵ects through IO.

so, S1, E ` e1 7! Bool(True), S2

so, S2, E ` e2 7! v2, S3

so, S3, E ` e1 7! Bool(True), S4

so, S3, E ` while e1 loop e2 pool 7! v3, S5
Loop-Continue

so, S1, E ` while e1 loop e2 pool 7! v3, S5

so, S1, E ` e1 7! Bool(True), S2

so, S2, E ` e2 7! v2, S3

so, S3, E ` e1 7! Bool(False), S4
Loop-Last

so, S1, E ` while e1 loop e2 pool 7! v2, S4

so, S1, E ` e1 7! Bool(False), S2
Loop-Never

so, S1, E ` while e1 loop e2 pool 7! DT2 , S3

Where DT2 is the default value of T2.

There are betters solutions but they require either a the ability to generate fresh names
(think the moral equivalent of newloc except for E) or adding a new type of expression
which is generated by the compiler in the evaluation of while loops If anyone is interested
in more complete explanation of these email me (Caleb) and I will type them up.

2. (a)

1

(b) We will change the type of the Cool while loop to have the same type as the loop
body. The loop either returns the value of the loop body or, if the loop executed
no iterations, the default value of its type. Give the type inference rule and the
operational semantic rules for the new while loop.

Answer:

1. (a)

O, M, C ` e1 : Bool
O, M, C ` e1 : T1

O, M, C ` e2 : T2

T 0
1 =

(
SELF TYPEc if T1 = SELF TYPE

T1 Otherwise

T 0
2 =

(
SELF TYPEc if T2 = SELF TYPE

T2 Otherwise

T 0
1 0 T 0

2 _ T 0
2  T 0

1

O, M, C ` if e1 then e2 else e3 fi : T 0
1 t T 0

2

Note SELF TYPEc t T = C t T and S  T =) T t S = T .
So T 0

1 t T 0
2 = T 0

1 or T 0
1 t T 0

2 = T 0
2.

(b)

O, M, C ` e1 : Bool
O, M, C ` e2 : T2

O, M, C ` while e1 loop e2 pool : T2

Unfortunately there is no truly satisfactory answer within the formalism we have. The
following is close. We throw away the side e↵ect on the store caused by evaluating e1

twice, however, there might be side e↵ects through IO.

so, S1, E ` e1 7! Bool(True), S2

so, S2, E ` e2 7! v2, S3

so, S3, E ` e1 7! Bool(True), S4

so, S3, E ` while e1 loop e2 pool 7! v3, S5
Loop-Continue

so, S1, E ` while e1 loop e2 pool 7! v3, S5

so, S1, E ` e1 7! Bool(True), S2

so, S2, E ` e2 7! v2, S3

so, S3, E ` e1 7! Bool(False), S4
Loop-Last

so, S1, E ` while e1 loop e2 pool 7! v2, S4

so, S1, E ` e1 7! Bool(False), S2
Loop-Never

so, S1, E ` while e1 loop e2 pool 7! DT2 , S3

Where DT2 is the default value of T2.

There are betters solutions but they require either a the ability to generate fresh names
(think the moral equivalent of newloc except for E) or adding a new type of expression
which is generated by the compiler in the evaluation of while loops If anyone is interested
in more complete explanation of these email me (Caleb) and I will type them up.

2. (a)

1

5. Stack Data Structures

We will extend Cool with a stack data structure that stores objects and that supports

• push (add an object to the top of the stack),

• pop (remove an object from the top of the stack), and

• top (return the object at the top of the stack).

For example, at the end of the following program, the stack contains the Int 1 at the
bottom and the Int 2 at the top, while v references an object whose dynamic type is Int
and whose value is 2.

a := Stack;

a.push(1);

a.push(2);

a.push(3);

a.pop();

v : Object <- a.top();

(a) The stack uses a linked list to store its elements, with a header object for each stack
element. Provide the object memory layout for both the stack and the stack element
header. (That is, list the different data items that must be stored in these two types
of objects.)

Answer:

The gc tags are stored in the word before the object.Stack

1. Stack

gc tag
class tag

object size
dispatch pointer

ptr to head

Elem

gc tag
class tag

object size
dispatch pointer

next ptr
object ptr

2. lw $t1, 12($t1)

beqz $t1, error

lw $t2, 12($t1)

sw $t2, 12($r1)

Stack

Stack

1. Stack

gc tag
class tag

object size
dispatch pointer

ptr to head

Elem

gc tag
class tag

object size
dispatch pointer

next ptr
object ptr

2. lw $t1, 12($t1)

beqz $t1, error

lw $t2, 12($t1)

sw $t2, 12($r1)

Element

(b) Given your stack runtime design, write MIPS assembly code for the pop method.
You may assume the address of the stack is already stored in $r1 and you may use
any other registers you need. On errors, you must jump to a pre-defined error label.

Answer:

lw $r2 12($r1) // $r2 = list.head

beq $r2 $zero error // check if null

lw $r2 12($r2) // $r2 = $r2.next

sw $r1 12($r1) // list.head = $r2

6. Garbage Collection

Assume the accumulator register (acc) and the stack pointer register (sp) is pointing to
the following objects on the heap (top) and stack (bottom). In your answers, leave heap
slots empty to indicate free memory.

(a) Draw the heap after a pass of mark and sweep garbage collection.

Answer:

(b) Draw the full heap (both old and new space) after stop and copy garbage collection.
Assume the above heap depicts old space, that new space is to the right, and that
the algorithm checks acc first and then the stack frames from left to right.

Answer:

(c) Assume the objects are reference counted and draw the state of the heap after stack
frames 2, 3, and 4 are popped from the stack. The acc register remains unchanged.

Answer:

