CS143 Final
Spring 2025

 Please read all instructions (including these) carefully.

o There are 6 questions on the exam, some with multiple parts. You have 180 minutes
to work on the exam.

e The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason other than to
access the class webpage.

o Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

e Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary. Partial solutions will be graded
for partial credit.

SUNET ID:

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

’ Problem \ Max points \ Points ‘

1 20
2 20
3 15
4 15
) 15
6 15

| TOTAL | 100 | |

1. Types and Functions

In this problem, we will investigate subtyping rules for first-class functions. Many modern
languages combine functional and object-oriented programming styles, making it necessary
to have a subtyping principle for function values. We will write A — B for the type of
functions that map an argument of type A to a value of type B (we will only look at
functions with one argument).

Recall that the Cool conformance/subtyping relation A < B formalizes the intuitive notion
that a value of type A can be used anywhere a value of type B is expected. The subtyping
facts and rules you give for this problem must obey this principle.

(a) Suppose we have two classes Student and Person satisfying Student < Person, then we
can form four function types:

Student — Student
Student — Person
Person — Student

Person — Person

Write down the subtype (<=) relationships that hold between these function types.
You do not need to write down the four trivial ones where the two sides are equal, such
as (Student — Student) < (Student — Student).

Answer:

To be equally usable, a function must return a value that is at least as specific as
expected, and must accept values at least as general as expected.

(Student — Student) < (Student — Person)
(Person — Student) < (Student — Student)
(Person — Student) < (Student — Person)
(Person — Student) < (Person — Person)

) <(

(Person — Person Student — Person)

(b) Suppose we have types A, A’ B, B and the function types A — B and A" — B’. Write
down what we need to know about the relationships between A and A’, and B and B’
in order to know that (A — B) < (A" — B’).

Answer:

The following relationships must hold:

A<A
B< B

To belong to a subtype, a function needs to accept at least as wide of a range of
arguments while producing at least as specific results.

2. Code Generation

In this question, we are going to add a new expression to the small expression language from
Lecture 12, starting from assembly code.

(a) Describe an expression that would result in the following assembly code, where angle
brackets are placeholders for the assembly code of sub-expressions. The $zero register
holds the value 0.

start:
<assembly code for expri>
sw $a0 0($sp)
addiu $sp $sp -4
<assembly code for expr2>
move $t1 $al
lw $a0 4($sp)
addiu $sp $sp 4
bne $t1 $zero start

The bne instruction branches to the given label if the two registers are not equal.

Answer:

The expression is a loop that is evaluated at least once and that terminates if expr2
is zero. We will call this loop construct a do-while loop, although other names are also
possible.

Possible CFG for the loop construct: e := do e; while e,

(b) Write a type rule for the expression, in the style of the type rules in the Cool manual.

Answer:

O,M,CFe;:int
O,M,C | e5:int

O, M,C | do e; while e, : int

Other forms are also acceptable, including evaluating Fs5 to a bool and evaluating F
and the do-while expression to 7.

Write the operational semantics rule(s) to describe the runtime behavior of your new
expression, in the style of the operational semantic rules in the Cool manual.

Answer:

Operational semanatics for the false case (the integer 0):
S, EtFe:v,5

Sl,El_eg . O,SQ

S, E I do ey while e5 : v, S5

Operational semanatics for the true case (any integer except 0:

S,El—elzvl,Sl
Sl,E F €9 . ’UQ,SQ
So, B+ do e; while e : v, S35

S,E F do ey while e : v, .55

Note: operational semantic rules match on the more specific case, so there is no need
to exclude 0 from the values returned by e, in the true case.

3. Optimization

(a)

The algorithm you learned in lecture for local common subexpression elimination re-
quires the IR to be in single static assignment (SSA) form. Specifically, if two assign-
ments have the same right-hand-side, and the right-hand-side is pure and free of side
effects, you can eliminate the later assignment and replace it with the value computed
in the earlier assignment. Why is it incorrect to do so if the IR is not in SSA form? Pro-
vide an example where it does not work and a brief explanation. Your counter-example
should contain no more than five assignments.

Answer:

Consider the following assignment:

XxX=a+b
x =3
y=a+b

Although the first and last statements have the same sub-expression, it is not correct
to replace later uses of y with uses of x. The reason is that the value of x is overwritten
in the second statement. With SSA form, each variable can only be written to by one
statement so such overwriting cannot happen in straightline code.

Give a minimal program for which performing constant folding, copy propagation,
and then dead code elimination is better than performing copy propagation, constant
folding, and then dead code elimination.

Answer:

Assume x is live at the end of the following statements:

1+1
X=y+z

<
I

4. Register Allocation

(a) Below is a control-flow graph annotated with liveness information, but someone has
spilled coffee on it! Fill in the missing statements and liveness sets. Valid entries for
statements are of the form x = y or x = y + z, where x,y,z € {a,b,c,d,e,f}. Make
sure there are no dead code.

Answer:
—{ }
a=1
—{a}
c=2 B
{ a }
—{a} —{a}
b=a c=3
—{ b } —{a,c}
a=4 b=a+c
- {a, b} —{ a,b,c |}
v Y
L {{a,b } —{ ¢ }
f=a+b d=4
—{f} —{c,d}
e=f e=c+d [
[{e} {e}
—{e}
d=e
_{dve}
f=d+e
—{f}

(b) Build the register inference graph for the above control-flow graph.

Answer:

(c) Provide a valid register allocation by listing, for each register, the variables that share
it. Use the minimal number of registers.

Answer:
rl: a, d
r2: b, e
r3: c, f

-

Other register allocations are possible.

5. Garbage Collection

In the following sub-questions we will explore the relative advantages of the three garbage
collection schemes covered in class: mark-and-sweep, stop-and-copy, and reference counting.

(a) Describe a situation where stop-and-copy outperforms mark-and-sweep.

Answer:

A program that allocates a lot of short-lived objects on the heap. This program has a
lot of garbage to collect, so stop-and-copy performs better because its garbage collection
cost is proportional to the live objects and does not have to traverse the garbage.

(b) Describe a situation where mark-and-sweep outperforms stop-and-copy.

Answer:

A program with a lot of live data on the heap. Since stop-and-copy only has half the
space available for live data, it will need to collect garbage more often than mark-and-
sweep.

(c) Describe a situation where reference counting outperforms mark-and-sweep.

Answer:

A program where references are seldomly copied, where most objects have long life-
times, and where garbage collection is invoked several times. Mark-and-sweep must
traverse the whole heap during garbage collection, while reference counting only tra-
verses the objects reachable from a dereferenced reference.

6. Runtime Organization

Provide three Cool classes with the minimum total number of features that can result in the
following runtime layout:

Heap Static Code

Afal 1]

—

T

ﬁ

h()

/

|
:

Bls] [1]2]
L | > ()
lcls][1]2] ~| . ho
Answer:
class A {
x: Int <- 1;
h() : Int {1};
}s;

class B inherits A {
y: Int <- 2;
};

class C inherits B {
f() : Int {13};
h() : Int {2};
};

(blank page for extended answers)

