This assignment asks you to prepare written answers to questions on regular languages, finite automata, and lexical analysis. Each of the questions has a short answer. You may discuss this assignment with other students and work on the problems together. However, your write-up should be your own individual work. Assignments can be submitted electronically as a PDF by 11:00 AM PDT on scoryst.com. Please enroll in Scoryst using https://scoryst.com/enroll/ltkgbu1udy/. A LaTeX template for writing your solutions is available on course website. There is a post on Piazza describing how to create high quality DFA diagrams.

1. Write regular expressions for the following languages over the alphabet $\Sigma = \{a, b\}$:

 (a) The set of all strings ending with aab.

 (b) The set of all strings with three consecutive a’s.

 (c) The set of all strings which do not contain the substring bab.

2. Draw DFA’s for each of the languages from question 1.

3. Consider the following deterministic finite automaton (DFA) over the alphabet $\Sigma = \{0, 1\}$.

 ![DFA Diagram]

 Give a one-sentence description of the language recognized by the DFA. Write a regular expression for this language.

4. Let L be the language over $\Sigma = \{0, 1\}$ such that every string in L contains a pair of 0’s that are separated by a string whose length is $3i + 1$, for some $i \geq 0$. Draw a non-deterministic finite automaton (NFA) for L. Give an upper bound on the number of states in the corresponding DFA.
5. For each of the following specifications written in Flex, give a regular expression describing the language of possible outputs. Assume that all inputs are strings consisting of characters a, b, A, and B.

(a) Specification 1:

```
[bB][bB]   { printf("w"); }
[aA]      { printf("x"); }
[aA][aA]   { printf("y"); }
[bB]      { printf("z"); }
```

(b) Specification 2:

```
([bB]+)([aA]*) { printf("x"); }
[aA]      { printf("y"); }
[bB]      { printf("z"); }
```