
CS143 Spring 2023 – Written Assignment 4 – Solutions

1. Consider the following program in Cool, representing a “slightly” over-engineered implemen-
tation which calculates the factorial of 3 using an operator class and a reduce() method:

1 class BinOp {
2 optype (): String {
3 "BinOp"
4 };
5
6 operate (a: Int , b: Int): Int {
7 a + b
8 };
9 };

10
11 class SumOp inherits BinOp {
12 optype (): String {
13 "SumOp"
14 };
15 };
16
17 class MulOp inherits BinOp {
18 optype (): String {
19 "MulOp"
20 };
21
22 operate (a: Int , b: Int): Int {
23 a * b
24 };
25 };
26
27 class IntList {
28 head: Int;
29 tail: IntList ;
30 empty_tail : IntList ; -- Do not assign .
31
32 tail_is_empty (): Bool {
33 tail = empty_tail
34 };
35
36 get_head (): Int { head };
37
38 set_head (n: Int): Int {
39 head <- n
40 };
41
42 get_tail (): IntList { tail };
43
44 set_tail (t: IntList): IntList {
45 tail <- t
46 };
47
48 -- Create a list [n, n-1, ..., 2, 1] for n ≥ 1

1

49 generate (n: Int): IntList {
50 let l: IntList <- New IntList in {
51 l. set_head (n); -- Point A
52 if (n = 1) then
53 l. set_tail (empty_tail)
54 else
55 l. set_tail (generate (n -1))
56 fi;
57 l;
58 }
59 };
60 };
61
62 class Main {
63 reduce (result : Int , op: BinOp , l: IntList): Int {{
64 result <- op. operate (result ,l. get_head ());
65 if (l. tail_is_empty ()) then
66 result -- Point B
67 else
68 reduce (result ,op ,l. get_tail ())
69 fi;
70 }};
71
72 main (): Object {
73 let op: BinOp <- New MulOp , l: IntList <- New IntList , io: IO

<- New IO in {
74 l <- l. generate (3);
75 io. out_int (self. reduce (1,op ,l));
76 }
77 };
78 };

2

The following is an abstracted representation of a memory layout of the program generated by
a hypothetical Cool compiler for the above code (note that this might or might not correspond
to the layout generated by your compiler or the reference coolc):

Code segment:
maddr1: cgen_m(BinOp.optype)
maddr2: cgen_m(BinOp.operate)
maddr3: cgen_m(SumOp.optype)
maddr4: cgen_m(MulOp.operate)
maddr5: cgen_m(MulOp.optype)
maddr6: cgen_m(IntList.tail_is_empty)
maddr7: cgen_m(IntList.get_head)
maddr8: cgen_m(IntList.set_head)
maddr9: cgen_m(IntList.get_tail)

maddr10: cgen_m(IntList.set_tail)
maddr11: cgen_m(IntList.generate)
maddr12: cgen_m(Main.reduce)
maddr13: cgen_m(Main.main)

Dispatch tables:
maddr14: DT[BinOp]
maddr15: DT[SumOp]
maddr16: DT[MulOp]
maddr17: DT[IntList]
maddr18: DT[Main]

Stack (maddr19)
↓

↑
Heap

In the above, maddri represents the memory address at which the corresponding method’s
code or dispatch table starts. You should assume that the above layout is contiguous in
memory.

3

(a) The following is a representation of the dispatch table for class Main:

Method Idx Method Name Address
0 reduce maddr12
1 main maddr13

Provide equivalent representations for the dispatch tables of BinOp, SumOp and IntList.
You can ignore built-in methods like abort, type_name, and copy.

BinOp:
Method Idx Method Name Address
0 optype maddr1
1 operate maddr2

SumOp:
Method Idx Method Name Address
0 optype maddr3
1 operate maddr2

MulOp:
Method Idx Method Name Address
0 optype maddr5
1 operate maddr4

IntList:
Method Idx Method Name Address
0 tail_is_empty maddr6
1 get_head maddr7
2 set_head maddr8
3 get_tail maddr9
4 set_tail maddr10
5 generate maddr11

4

(b) Consider the state of the program at runtime when reaching (for the first time) the
beginning of the line marked with the comment “Point A”. Give the object layout (as
per Lecture 12) of every object currently on the heap which is of a class defined by the
program (i.e. ignoring Cool base classes such as IO or Int). For attributes, you can
directly represent Int values by integers and an unassigned pointer by void. However,
note that in a real Cool program, Int is an object and would have its own object layout,
omitted here for simplicity. Finally, you can assume class tags are numbers from 1 to 5
given in the same order as the one in which classes appear in the layout above.

Answer:
Main

5
3
maddr18

MulOp
3
3
maddr16

IntList (in Main.main)
4
6
maddr17
0
void
void

IntList (in IntList.generate)
4
6
maddr17
0
void
void

or

4
6
maddr17
3
void
void

5

(c) The following table represents an abstract view of the layout of the stack at runtime
when reaching (for the first time) the beginning of the line marked with the comment
“Point A”.

Address Method Contents Description
maddr19 Main.main self arg0
maddr19 − 4 Main.main ... Return
maddr19 − 8 Main.main op local
maddr19 − 12 Main.main l local
maddr19 − 16 Main.main io local
maddr19 − 20 IntList.generate maddr19 − 4 FP
maddr19 − 24 IntList.generate 3 arg1
maddr19 − 28 IntList.generate self arg0
maddr19 − 32 IntList.generate maddr13 + δ Return
maddr19 − 36 IntList.generate l local

Note that we are assuming there are no stack frames above Main.main(...). This doesn’t
necessarily match a real implementation of the Cool runtime system, where main must
return control to the OS or the Cool runtime on exit. For the purposes of this exercise,
feel free to ignore this issue. Also, since you don’t have the generated code for every
method above, you cannot directly calculate the return address to be stored on the stack.
You should however give it as maddri + δ, denoting an unknown address between maddri

and maddri+1. This notation is used in the example above. For locals, you should use
the variable name, but remember that in practice it is the heap address that gets stored
in memory for objects.
Give a similar view of the stack at runtime when reaching (for the first time) the begin-
ning of the line marked with the comment “Point B”.

6

Address Method Contents Description
maddr19 Main.main self arg0
maddr19 − 4 Main.main ... Return
maddr19 − 8 Main.main op local
maddr19 − 12 Main.main l local
maddr19 − 16 Main.main io local
maddr19 − 20 Main.reduce maddr19 − 4 FP
maddr19 − 24 Main.reduce ptr to [3,2,1] arg3
maddr19 − 28 Main.reduce ptr to MulOp arg2
maddr19 − 32 Main.reduce 3 arg1
maddr19 − 36 Main.reduce self arg0
maddr19 − 40 Main.reduce maddr13 + δ1 Return
maddr19 − 44 Main.reduce maddr19 − 40 FP
maddr19 − 48 Main.reduce ptr to [2,1] arg3
maddr19 − 52 Main.reduce ptr to MulOp arg2
maddr19 − 56 Main.reduce 6 arg1
maddr19 − 60 Main.reduce self arg0
maddr19 − 64 Main.reduce maddr12 + δ2 Return
maddr19 − 68 Main.reduce maddr19 − 64 FP
maddr19 − 72 Main.reduce ptr to [1] arg3
maddr19 − 76 Main.reduce ptr to MulOp arg2
maddr19 − 80 Main.reduce 6 arg1
maddr19 − 84 Main.reduce self arg0
maddr19 − 88 Main.reduce maddr12 + δ2 Return

Notice that in the last three stack frames, we do not have a separate entry for “result”,
since it is a formal parameter and not a local variable.

7

2. Consider the following assembly language used to program a stack machine (r, r1, and r2
denote arbitrary registers):

• push r: copies the value of r and pushes it onto the stack.
• top r: copies the value at the top of the stack into r. This command does not modify

the stack.
• pop: discards the value at the top of the stack.
• swap: swaps the value at top of the stack with the value right beneath it. E.g. if the

stack was ⟨ $, .., 5, 2 ⟩ swap would change the stack to be ⟨ $, ..., 2, 5 ⟩
• r1+ = r2: adds r1 and r2 and saves the result in r1. r1 may be the same as r2.
• r1− = r2: subtracts r2 from r1 and saves the result in r1. r1 may be the same as r2.
• clamp r: sets r to 0 if r is negative otherwise leaves r unchanged
• jump r: jumps to the address in r and resumes execution.
• ite r1 r2 r3: if r1 is not equal to zero then jumps to the address in r2 else jumps to the

address in r3.
• loadconst r int: loads a constant int into r
• loadlabel r label: loads the address of a labeled code segment into r.

Provide a code generation function for each the of these instructions, except loadlabel, tar-
geting MIPS. Assume that registers used in the stack language are valid MIPS registers. Use
$sp to hold a pointer to the top of the stack and a single temporary register $at which is
guaranteed to not appear in the stack language.

8

cgen(push r) =
sw r 0($sp)
addiu $sp $sp -4

cgen(top r) =
lw r 4($sp)

cgen(pop) =
addiu $sp $sp 4

cgen(swap) =
lw $at 4($sp) // get the top of the stack
sw $at 0($sp) // duplicate it
lw $at 8($sp) // get the item below it
sw $at 4($sp) // store it on top of the stack
lw $at 0($sp) // get the duplicated item
sw $at 8($sp) // store it in the second slot

cgen(r1 += r2) =
addu r1 r1 r2

cgen(r1 -= r2) =
subu r1 r1 r2

cgen(clamp r) =
bltz r neg
j done

neg:
li r 0

done:

cgen(jump r) =
jr r

cgen(ite r1 r2 r3) =
li $at 0
beq $at r1 false_branch
jr r2

false_branch :
jr r3

cgen(loadconst r int) =
li r int

9

3. Suppose you want to add a for-loop construct to Cool, having the following syntax:

for id : Int ← e1 to e2 do e3 rof

The above for-loop expression is evaluated as follows: expressions e1 and e2 are evaluated
only once, then the body of the loop (e3) is executed once for every value of id starting with
the value of e1 and incremented by 1 thereafter until reaching the value of e2 (inclusive).
Similar to the while loop, the for-loop returns void.

(a) Give the operational semantics for the for-loop construct above.

Answer: These are similar to the operational semantics of the let and while expressions,
with some care applied to requirement that e1 and e2 be evaluated only once. First, we
need a rule for when the for loop executes zero times (the bounds don’t include any
number):

so, S, E ⊢ e1 : Int(i1), S1 so, S1, E ⊢ e2 : Int(i2), S2 i1 > i2

so, S, E ⊢ for id : Int ← e1 to e2 do e3 rof : void, S2

Then the general case where we do enter the loop:

so, S, E ⊢ e1 : Int(i1), S1
so, S1, E ⊢ e2 : Int(i2), S2

i1 ≤ i2
l1 = newloc(S2)

so, S2[Int(i1)/l1], E[l1/id] ⊢ e3 : v3, S3
in = S3(l1) + 1

so, S3, E ⊢ for id : Int ← in to i2 do e3 rof : void, S4

so, S, E ⊢ for id : Int ← e1 to e2 do e3 rof : void, S4

Where Int(ik) represents a Cool Int object with ik as its corresponding numerical value.
When used in the program syntax, ik refers to the corresponding integer literal.

10

(b) Give the code generation function cgen(for id : Int ← e1 to e2 do e3 rof) for this
construct. Use the code generation conventions from the lecture. The result of cgen(...)
must be MIPS code following the stack-machine with one accumulator model.
Assume that cgen(e1) (and similarly cgen(e2)) does integer unboxing, i.e., the evaluation
result of e1 will be stored in $a0 after executing cgen(e1). You can use the instruction
ble r1, r2, label in order to branch to label if r1 ≤ r2.
Answer: Note that id is a new local introduced by the for construct. Thus, it gets
assigned a space in the AR. In the code below we will assume that a variable i is defined
while generating the code for the body of each method, and contains the offset from the
frame pointer at which id should be stored in the AR. Also, we assume our compiler
does integer unboxing, so we can operate directly with id (and other Cool Ints) as MIPS
int32 values directly, avoiding additional accesses to the heap.

1 cgen(for id: Int <- e1 to e2 do e_3 rof , nt) =
2 cgen(e1 , nt)
3 sw $a0 i($fp) # Save id=val(e1) on i-th var
4 cgen(e2 , nt +4)
5 sw $a0 4($sp) # Save v2=val(e2) on stack
6 addiu $sp $sp -4
7 for_loop :
8 lw $a0 i($fp) # current value of id
9 lw $t1 4($sp) # value of e2

10 bgt $a0 $t1 for_exit # Exit if id > v2
11 cgen(e3 , nt) # Might change id and clobber $a0
12 lw $a0 i($fp) # Load id again
13 addiu $a0 $a0 1 # Increment it by 1
14 sw $a0 i($fp) # Save it back
15 b for_loop # Jump back to the loop check
16 for_exit :
17 addiu $sp $sp 4 # Remove value of e2 from stack

11

4. Consider the following basic block, in which all variables are integers.
1 x := 0 * 5
2 y := a + b
3 z := x * x
4 c := y * x
5 x := x + 4
6 e := c - x
7 x := e * x
8 f := a + b
9 y := y + f

(a) Assume that the only variables that are live at the exit of this block are x and y, while a
and b are given as inputs. In order, apply the following optimizations to this basic block.
Show the result of each transformation. For each optimization, you must continue to
apply it until no further applications of that transformation are possible (if any were),
before writing out the result and moving on to the next.

i. Algebraic simplification
ii. Common sub-expression elimination
iii. Copy propagation / Constant propagation
iv. Algebraic simplification
v. Dead code elimination

Solution:
i.

1 x := 0
2 y := a + b
3 z := x * x
4 c := y * x
5 x := x + 4
6 e := c - x
7 x := e * x
8 f := a + b
9 y := y + f

ii.
1 x := 0
2 y := a + b
3 z := x * x
4 c := y * x
5 x := x + 4
6 e := c - x
7 x := e * x
8 f := y
9 y := y + f

iii
1 x := 0
2 y := a + b
3 z := 0 * 0
4 c := y * 0

12

5 x := 0 + 4
6 e := c - x
7 x := e * x
8 f := y
9 y := y + y

iv
1 x := 0
2 y := a + b
3 z := 0
4 c := 0
5 x := 4
6 e := c - x
7 x := e * x
8 f := y
9 y := y << 1

v
1 y := a + b
2 c := 0
3 x := 4
4 e := c - x
5 x := e * x
6 y := y << 1

(b) The resulting program is still not optimal. What optimizations, in what order, can you
apply to fully optimize the result? Show the maximally optimized codes (with least
number of instructions).
Solution: You can apply copy propagation, algebraic simplification, and dead code
elimination to the output of the previous part to get the following:

1 y := a + b
2 x := -16
3 y := y << 1

13

5. Consider the following assembly-like pseudo-code, using 6 temporaries (abstract registers) a
to f :

1 a := b + d
2 b := a + d
3 d := a - b
4 c := d + d
5 if c > 100:
6 c := c + d
7 else:
8 d := 1
9 e := d - c

10 f := e - c

(a) At each program point, list the variables that are live. Note that b and d are inputs for
the given code and f is a live value on exit.
Solution:

1 {b,d}
2 a := b + d {a,d}
3 b := a + d {a,b}
4 d := a - b {d}
5 c := d + d {c,d}
6 if c > 100:
7 {c,d}
8 c := c + d {c,d}
9 else:

10 {c}
11 d := 1 {c,d}
12 e := d - c {c,e}
13 f := e - c {f}

(b) Draw the register interference graph between temporaries in the above program as de-
scribed in class.
Solution:

a

b

c

d

e f

(c) Provide a lower bound on the number of registers required by the program induced from
the interference graph. Can you explain why?
Solution: 3. It is mainly because there is a triangle in the graph.

14

(d) Using the algorithm described in class, provide a coloring of the graph in part(b). The
number of colors used should be your lower bound in part (c). Provide the final k-colored
graph (you may use the tikz package to typeset it or simply embed an image), along
with the order in which the algorithm colors the nodes.
Solution:

a

b

c

d

e f

a

b

c

d

e f

a

b

c

d

e f

a

b

c

d

e f

a

b

c

d

e f

15

a

b

c

d

e f

(e) Based on your coloring, write down a mapping from temporaries to registers (labeled r1,
r2, etc.).
Solution:

1 a: r1
2 b: r2
3 c: r2
4 d: r3
5 e: r3
6 f: r3

16

