Local Optimizations

Prof. Alex Aiken

(minor edits by Prof. David Dill)
Lecture Outline

• Wrap up operational semantics: Dispatch

• Optimization
 - Introduction
 - Intermediate code
 - Local optimizations
Dispatch

e_0.f(e_1, \ldots, e_n)

1. Eval args in order
2. Eval e_0

Order seems odd.
Can it affect the result?
Dispatch

\[e_0 . f(e_1, \ldots, e_n) \]

1. Eval args in order
2. Eval \(e_0 \)
3. Let \(X \) be the dynamic type of \(e_0 \) value
4. Get definition of \(f \) from \(X \)
5. Create \(n \) new locations for args
6. Update \(E \) to map formals to new locations
7. Update \(S \) to map new locs to arg values
8. Set self to \(e_1 \) value
9. Eval body of \(f \)
Notation: $\text{Impl}(A, f) = (x_1, x_2, \ldots, x_n, e_{\text{body}})$

x_i - formal parameters

e_{body} - body of function
so, E, S ⊢ e₁ : V₁, S₁

... ...

so, E, S_{n-1} ⊢ eₙ : Vₙ, Sₙ

so, E, Sₙ ⊢ e₀ : V₀, Sₙ₊₁

← e₀ evaluated with all side effects of e₁ ... eₙ

so, E, S ⊢ e₀ . f(e₁, ..., eₙ) : V, S_{n+3}
\[s_0, E, S \vdash e_1 : V_1, S_1 \]

\[\cdots \]

\[s_0, E, S_{n-1} \vdash e_n : V_n, S_n \]

\[s_0, E, S_n \vdash e_0 : V_0, S_{n+1} \]

\[V_0 = X(a_1 = l_1, \ldots, a_m = l_m) \]

\[s_0, E, S \vdash e_0 \cdot f(e_1, \ldots, e_n) : V, S_{n+3}. \]
\[s_0, E, S \vdash e_1 : V_1, S_1 \]

\[\cdots \]

\[s_0, E, S_{n-1} \vdash e_n : V_n, S_n \]

\[s_0, E, S_n \vdash e_0 : V_0, S_{n+1} \]

\[V_0 = X(a_1 = e_1, \ldots, a_m = e_m) \]

\[\text{impl} (X, f) = (x_1, x_2, \ldots, x_n) \in \text{body} \]

\[\uparrow \text{formals \\ body of } f \]

\[s_0, E, S \vdash e_0 \cdot f(e_1, \ldots, e_n) : V, S_{n+3} \]
$s_0, E, S \vdash e_1 : V_1, S_1$

\[\cdots \]

$so, E, S_{n-1} \vdash e_n : V_n, S_n$

$s_0, E, S_n \vdash e_0 : V_0, S_{n+1}$

$V_0 = \mathit{X}(a_1 = l_1, \ldots, a_m = l_m)$

$\mathit{impl}(X, f) = (x_1, x_2, \ldots, x_n, e_{\mathit{body}})$

$\forall x_i = \mathit{newloc}(S_{n+1})$ for $i = 1, \ldots, n$

\[\uparrow \text{new locations for arguments} \]

\[so, E, S \vdash e_0 \cdot f(e_1, \ldots, e_n) : V, S_{n+3} \]
\[s_0, E, S \vdash e_1 : V_1, S_1 \]

\[\cdots \]

\[s_0, E, S_{n-1} \vdash e_n : V_n, S_n \]

\[s_0, E, S_n \vdash e_0 : V_0, S_{n+1} \]

\[V_0 = \chi(a_1 = l_1, \ldots, a_m = l_m) \]

\[\text{impl}(X, f) = (x_1, x_2, \ldots, x_n, e_{\text{body}}) \]

\[\forall x_i = \text{newloc}(S_{n+1}) \text{ for } i = 1, \ldots, n \]

\[E' = [a_1 : l_1, \ldots, a_m : l_m][x_1 / l_{x_1}, \ldots, x_n / l_{x_n}] \]

\[\text{start with } X \text{ attributes only} \]

\[\text{then bind forms to new locations} \]

\[s_0, E, S \vdash e_0 \cdot f(e_1, \ldots, e_n) : V, S_{n+3} \]
\[s_0, E, S \vdash e_1 : V_1, S_1 \]
\[\quad \ldots \]
\[s_0, E, S_{n-1} \vdash e_n : V_n, S_n \]
\[s_0, E, S_n \vdash e_0 : V_0, S_{n+1} \]
\[V_0 = X(a_1 = l_1, \ldots, a_m = l_m) \]
\[\text{impl}(X, f) = (x_1, x_2, \ldots, x_n, e_{\text{body}}) \]
\[l_{x_i} = \text{newloc}(S_{n+1}) \quad \text{for } i = 1, \ldots, n \]
\[E' = [a_1 : l_1, \ldots, a_m : l_m][x_1/l_{x_1}, \ldots, x_n/l_{x_n}] \]
\[S_{n+2} = S_{n+1}[V_1/l_{x_1}, \ldots, V_n/l_{x_n}] \]
\[\uparrow \text{assign actuals to formals} \]

\[s_0, E, S \vdash e_0 \cdot f(e_1, \ldots, e_n) : V_0, S_{n+3} \]
12

so, E, S ⊢ e₁ : v₁, S₁

...

so, E, S_{n-1} ⊢ eₙ : vₙ, Sₙ

so, E, Sₙ ⊢ e₀ : v₀, S_{n+1}

v₀ = \mathcal{X}(a₁ = l₁, \ldots, aₘ = lₘ)

\text{impl}(x_j f) = (x_1, x_2, \ldots, x_n, e_{\text{body}})

\text{lxi} = \text{newloc}(S_{n+1}) \text{ for } i = 1, \ldots, n

E' = [a₁ : l₁, \ldots, aₘ : lₘ][\text{x₁}/\text{lxi}, \ldots, \text{xₙ}/\text{l₂n}]

S_{n+2} = S_{n+1}[v₁/\text{lxi}, \ldots, vₙ/\text{l₂n}]

v₀, E' ⊢ e_{\text{body}} : v₂, S_{n+3}

so, E, S ⊢ e₀ \cdot f(e₁, \ldots, eₙ) : v₂, S_{n+3}
Optimization
OPTIMIZATION
Optimization Overview

• Optimization seeks to improve a program’s resource utilization
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.

• Optimization should not alter what the program computes
 - The answer must still be the same
Optimization

• Optimization is our last compiler phase

• Most complexity in modern compilers is in the optimizer
 - Also by far the largest phase

• First, we need to discuss intermediate languages
INTERMEDIATE LANGUAGES
Why Intermediate Languages?

• When should we perform optimizations?
 - On AST
 • Pro: Machine independent
 • Con: Too high level
 - On assembly language
 • Pro: Exposes optimization opportunities
 • Con: Machine dependent
 • Con: Must reimplement optimizations when retargeting
 - On an intermediate language
 • Pro: Machine independent
 • Pro: Exposes optimization opportunities
Intermediate Languages

• Intermediate language = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 • E.g., push translates to several assembly instructions
 • Most opcodes correspond directly to assembly opcodes
Three-Address Intermediate Code

- Each instruction is of the form
 \[x := y \text{ op } z \]
 \[x := \text{ op } y \]
 - \(y \) and \(z \) are registers or constants
 - Common form of intermediate code
- The expression \(x + y \ast z \) is translated
 \[t_1 := y \ast z \]
 \[t_2 := x + t_1 \]
 - Each subexpression has a “name”
Generating Intermediate Code

- Similar to assembly code generation
- But use any number of IL registers to hold intermediate results
Generating Intermediate Code (Cont.)

- $\text{igen}(e, t)$ function generates code to compute the value of e in register t

- Example:

 $$\text{igen}(e_1 + e_2, t) = \text{igen}(e_1, t_1) \quad (t_1 \text{ is a fresh register})$$
 $$\text{igen}(e_2, t_2) \quad (t_2 \text{ is a fresh register})$$
 $$t := t_1 + t_2$$

- Unlimited number of registers
 $$\Rightarrow$$ simple code generation
An Intermediate Language

\[P \rightarrow S P \mid \varepsilon \]
\[S \rightarrow \text{id} := \text{id} \ \text{op} \ \text{id} \]
\[\quad \mid \text{id} := \text{op} \ \text{id} \]
\[\quad \mid \text{id} := \text{id} \]
\[\quad \mid \text{push id} \]
\[\quad \mid \text{id} := \text{pop} \]
\[\quad \mid \text{if id relop id goto L} \]
\[\quad \mid \text{L:} \]
\[\quad \mid \text{jump L} \]

- id’s are register names
- Constants can replace id’s
- Typical operators: +, -, *
Definition. Basic Blocks

• A **basic block** is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

• **Idea:**
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - A basic block is a single-entry, single-exit, straight-line code segment
Basic Block Example

• Consider the basic block

1. L:
2. \(t := 2 \times x \)
3. \(w := t + x \)
4. if \(w > 0 \) goto L'

• (3) executes only after (2)
 - We can change (3) to \(w := 3 \times x \)
Definition. Control-Flow Graphs

- A control-flow graph is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can pass from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is `jump L_B`
 - E.g., execution can fall-through from block A to block B
Example of Control-Flow Graphs

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal
LOCAL OPTIMIZATIONS
A Classification of Optimizations

• For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 • Apply to a basic block in isolation
 2. Global optimizations
 • Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 • Apply across method boundaries

• Most compilers do (1), many do (2), few do (3)
Cost of Optimizations

• In practice, a conscious decision is made not to implement the fanciest optimization known.

• Why?
 - Some optimizations are hard to implement.
 - Some optimizations are costly in compilation time.
 - Some optimizations have low benefit.
 - Many fancy optimizations are all three.

• Goal: Maximum benefit for minimum cost.
Local Optimizations

• The simplest form of optimizations

• No need to analyze the whole procedure body
 – Just the basic block in question

• Example: algebraic simplification
Algebraic Simplification

• Some statements can be deleted
 \[x := x + 0 \]
 \[x := x * 1 \]

• Some statements can be simplified
 \[x := x * 0 \quad \Rightarrow \quad x := 0 \]
 \[y := y ** 2 \quad \Rightarrow \quad y := y * y \]
 \[x := x * 8 \quad \Rightarrow \quad x := x << 3 \]
 \[x := x * 15 \quad \Rightarrow \quad t := x << 4; x := t - x \]
 (on some machines << is faster than *; but not on all!)
Constant Folding

• Operations on constants can be computed at compile time
 - If there is a statement $x := y \text{ op } z$
 - And y and z are constants
 - Then $y \text{ op } z$ can be computed at compile time

• Example: $x := 2 + 2 \Rightarrow x := 4$
• Example: if $2 < 0$ jump L can be deleted
• Can do many of these on the AST.
Flow of Control Optimizations

• Eliminate unreachable basic blocks:
 - Code that is unreachable from the initial block
 • E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller
 - And sometimes also faster
 • Due to memory cache effects (increased spatial locality)
Single Assignment Form

• Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment

• Rewrite intermediate code in *single assignment* form

 \[
 \begin{align*}
 x := z + y & \quad b := z + y \\
 a := x & \quad \Rightarrow \quad a := b \\
 x := 2 \times x & \quad x := 2 \times b \\
 \end{align*}
 \]

 (\(b\) is a fresh register)

 - More complicated in general, due to loops
Common Subexpression Elimination

• If
 - Basic block is in single assignment form
 - A definition \(x :=\) is the first use of \(x\) in a block

• Then
 - When two assignments have the same rhs, they compute the same value

• Example:

\[
\begin{align*}
x & := y + z \\
... & \Rightarrow ...
\end{align*}
\]

\[
\begin{align*}
w & := y + z \\
& \Rightarrow w := x
\end{align*}
\]

(the values of \(x\), \(y\), and \(z\) do not change in the ... code)
Copy Propagation

• If \(w := x \) appears in a block, replace subsequent uses of \(w \) with uses of \(x \)
 - Assumes single assignment form

• Example:

 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times a \\
 \end{align*}
 \quad \Rightarrow \quad
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times b \\
 \end{align*}
 \]

• Only useful for enabling other optimizations
 - Constant folding
 - Dead code elimination
Copy Propagation and Constant Folding

- Example:

 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 2 \times a \\
 y &:= x + 6 \\
 t &:= x \times y
 \end{align*}
 \]

 \[
 \begin{align*}
 &\Rightarrow \\
 a &:= 5 \\
 x &:= 10 \\
 y &:= 16 \\
 t &:= x \ll 4
 \end{align*}
 \]
Copy Propagation and Dead Code Elimination

If

\[w := \text{rhs} \] appears in a basic block
\[w \] does not appear anywhere else in the program

Then

the statement \[w := \text{rhs} \] is dead and can be eliminated
- **Dead** = does not contribute to the program’s result

Example: (\(a \) is not used anywhere else)

\[
\begin{align*}
x &:= z + y \\
b &:= z + y \\
a &:= x \\
b &:= z + y \\
x &:= 2 \times a \\
x &:= 2 \times b
\end{align*}
\]
Applying Local Optimizations

• Each local optimization does little by itself

• Typically optimizations interact
 – Performing one optimization enables another

• Optimizing compilers repeat optimizations until no improvement is possible
 – The optimizer can also be stopped at any point to limit compilation time
An Example

• Initial code:

 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f
An Example

• Algebraic optimization:
 \[
 \begin{align*}
 a & := x \times 2 \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• *Algebraic optimization:*

a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f
An Example

- Copy propagation:

 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f
An Example

- **Constant folding:**

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 3 \ll 1 \\
 f := a + d \\
 g := e \times f
 \]
An Example

- **Constant folding:**
 - \(a := x \times x \)
 - \(b := 3 \)
 - \(c := x \)
 - \(d := x \times x \)
 - \(e := 6 \)
 - \(f := a + d \)
 - \(g := e \times f \)
An Example

- *Common subexpression elimination:*

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- *Common subexpression elimination:*

 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f
An Example

• Copy propagation:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := a \]
 \[e := 6 \]
 \[f := a + d \]
 \[g := e \times f \]
An Example

- Copy propagation:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := a \\
 e & := 6 \\
 f & := a + a \\
 g & := 6 \times f
 \end{align*}
 \]
An Example

• Dead code elimination:

 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= a \\
 e &:= 6 \\
 f &:= a + a \\
 g &:= 6 \times f
 \end{align*}
An Example

• Dead code elimination:
 \[
 a := x \times x
 \]

 \[
 f := a + a
 \]

 \[
 g := 6 \times f
 \]

• This is the final form
Peephole Optimizations on Assembly Code

• These optimizations work on intermediate code
 - Target independent
 - But they can be applied on assembly language also

• Peephole optimization is effective for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement rules
 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
 where the rhs is the improved version of the lhs

• Example:
 \[
 \text{move a $b, move b $a \rightarrow move a $b}
 \]
 Works if move b a is not the target of a jump

• Another example
 \[
 \text{addiu a $a i, addiu a $a j \rightarrow addiu a $a i+j}
 \]
Peephole Optimizations (Cont.)

• Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0` → `move $a $b`
 - Example: `move $a $a` →
 - These two together eliminate `addiu $a $a 0`

• As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect
Local Optimizations: Notes

• Intermediate code is helpful for many optimizations

• Many simple optimizations can still be applied on assembly language

• “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term

• Next time: global optimizations