Global Optimization

Slides by Prof. Alex Aiken
Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis
Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= X + Y \\
Y &:= Z \times W \\
Q &:= 3 + Y \\
Y &:= Z \times W \\
Q &:= 3 + Y
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
A &:= 2 \times X
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times 3 \\
Y &:= 0
\end{align*}
\]
Correctness

• How do we know it is OK to globally propagate constants?
• There are situations where it is incorrect:
Correctness (Cont.)

To replace a use of \(x \) by a constant \(k \) we must know that:

\[
\text{On every path to the use of } x, \text{ the last assignment to } x \text{ is } x := k \quad **
\]
Example 1 Revisited

X := 3
B > 0

Y := Z + W

A := 2 * X

Y := 0
Example 2 Revisited

\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
Y &:= 0 \\
A &:= 2 \times X
\end{align*}
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global analysis
 - An analysis of the entire control-flow graph
Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property X at a particular point in program execution.
- Proving X at any point requires knowledge of the entire program.
- It is OK to be conservative. If the optimization requires X to be true, then want to know either:
 - X is definitely true
 - Don’t know if X is true
- It is always safe to say “don’t know”
Global Analysis (Cont.)

- *Global dataflow analysis* is a standard technique for solving problems with these characteristics

- *Global constant propagation* is one example of an optimization that requires *global dataflow analysis*
Global Constant Propagation

- Global constant propagation can be performed at any point where ** holds

- Consider the case of computing ** for a single variable \(X \) at all program points
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c</td>
<td>$X = \text{constant } c$</td>
</tr>
<tr>
<td>\top</td>
<td>X is not a constant</td>
</tr>
</tbody>
</table>
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[X := 0 \]
\[Y := 0 \]
\[A := 2 \times X \]
\[X = 3 \]
\[X = 3 \]
\[X = 4 \]
\[X = T \]
\[X = T \]
Using the Information

- **Given global constant information, it is easy to perform the optimization**
 - Simply inspect the $x = ?$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

- But how do we compute the properties $x = ?$
The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to “push” or “transfer” information from one statement to the next

• For each statement \(s \), we compute information about the value of \(x \) immediately before and after \(s \)

\[
\begin{align*}
C(x,s,\text{in}) &= \text{value of } x \text{ before } s \\
C(x,s,\text{out}) &= \text{value of } x \text{ after } s
\end{align*}
\]
Transfer Functions

• Define a transfer function that transfers information one statement to another

• In the following rules, let statement \(s \) have immediate predecessor statements \(p_1, \ldots, p_n \)
Rule 1

\[\text{if } C(p_i, x, \text{out}) = \top \text{ for any } i, \text{ then } C(s, x, \text{in}) = \top \]
Rule 2

\[C(p_i, x, \text{out}) = c \quad \& \quad C(p_j, x, \text{out}) = d \quad \& \quad d \neq c \quad \text{then} \]
\[C(s, x, \text{in}) = T \]
Rule 3

if $C(p_i, x, \text{out}) = c$ or \perp for all i,
then $C(s, x, \text{in}) = c$
Rule 4

if $C(p_i, x, \text{out}) = \bot$ for all i,
then $C(s, x, \text{in}) = \bot$
The Other Half

• Rules 1-4 relate the *out* of one statement to the *in* of the next statement

• Now we need rules relating the *in* of a statement to the *out* of the same statement
Rule 5

\[C(s, x, \text{out}) = \bot \text{ if } C(s, x, \text{in}) = \bot \]
Rule 6

\[C(x := c, x, \text{out}) = c \text{ if } c \text{ is a constant} \]
Rule 7

\[C(x := f(...), x, \text{out}) = \top \]
Rule 8

\[C(y := \ldots, x, \text{out}) = C(y := \ldots, x, \text{in}) \text{ if } x \neq y \]
An Algorithm

1. For every entry s to the program, set $C(s, x, \text{in}) = \top$

2. Set $C(s, x, \text{in}) = C(s, x, \text{out}) = \bot$ everywhere else

3. Repeat until all points satisfy 1-8:
 Pick s not satisfying 1-8 and update using the appropriate rule
The Value \perp

- To understand why we need \perp, look at a loop
Discussion

• Consider the statement $Y := 0$

• To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors
 - $X := 3$
 - $A := 2 \times X$

• But info for $A := 2 \times X$ depends on its predecessors, including $Y := 0$!
The Value ⊥ (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value ⊥ means “So far as we know, control never reaches this point”
Example

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times X \\
A &< B \\
Y &:= 0
\end{align*}
\]
Example

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times X \\
A &< B \\
Y &:= 0
\end{align*}
\]
Example

- $X := 3$
- $B > 0$
- $Y := Z + W$
- $A := 2 * X$
- $A < B$
- $Y := 0$
- $X = 3$
- $X = \top$
- $X = \bot$
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[A := 2 \times X \]
\[A < B \]
Orderings

• We can simplify the presentation of the analysis by ordering the values

\[\bot < c < \top \]

• Drawing a picture with “lower” values drawn lower, we get

\[
\begin{array}{c}
\top \\
-1 & 0 & 1 \\
\bot
\end{array}
\]
Orderings (Cont.)

• \top is the greatest value, \bot is the least
 - All constants are in between and incomparable

• Let lub be the least-upper bound in this ordering

• Rules 1-4 can be written using lub:

 $$C(s, x, \text{in}) = \text{lub} \{ C(p, x, \text{out}) \mid p \text{ is a predecessor of } s \}$$
Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

• The use of lub explains why the algorithm terminates
 - Values start as ⊥ and only increase
 ⊥ can change to a constant, and a constant to T
 - Thus, \(C(s, x, _) \) can change at most twice
Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of $C(....)$ value computed * 2 =
Number of program statements * 4
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $X := 3$ is dead (assuming X not used elsewhere)
Live and Dead

- The first value of x is *dead* (never used)
- The second value of x is *live* (may be used)
- Liveness is an important concept
Liveness

A variable x is live at statement s if

- There exists a statement s' that uses x

- There is a path from s to s'

- That path has no intervening assignment to x
Global Dead Code Elimination

• A statement $x := \ldots$ is dead code if x is dead after the assignment

• Dead statements can be deleted from the program

• But we need liveness information first \ldots
Computing Liveness

• We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation.

• Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

\[L(p, x, \text{out}) = \bigvee \{ L(s, x, \text{in}) \mid s \text{ a successor of } p \} \]
Liveness Rule 2

\[L(s, x, \text{in}) = \text{true} \text{ if } s \text{ refers to } x \text{ on the rhs} \]
Liveness Rule 3

\[L(x := e, x, \text{in}) = \text{false} \text{ if } e \text{ does not refer to } x \]
Liveness Rule 4

$L(s, x, \text{in}) = L(s, x, \text{out})$ if s does not refer to x
Algorithm

1. Let all $L(...)$ = false initially

2. Repeat until all statements s satisfy rules 1-4
 Pick s where one of 1-4 does not hold and update using the appropriate rule
Termination

- A value can change from false to true, but not the other way around

- Each value can change only once, so termination is guaranteed

- Once the analysis is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a *forwards* analysis: information is pushed from inputs to outputs

Liveness is a *backwards* analysis: information is pushed from outputs back towards inputs
Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points