Overview of Semantic Analysis

Lecture 9

Midterm Thursday

- In class
 - SCPD students come to campus for the exam
- Material through lecture 8
- Open note
 - Laptops OK, but no internet or computation

Outline

- The role of semantic analysis in a compiler
 - A laundry list of tasks
- Scope
 - Implementation: symbol tables
- Types

The Compiler So Far

- Lexical analysis
 - Detects inputs with illegal tokens
- Parsing
 - Detects inputs with ill-formed parse trees
- Semantic analysis
 - Last “front end” phase
 - Catches all remaining errors

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs not context-free

What Does Semantic Analysis Do?

- Checks of many kinds... coolc checks:
 1. All identifiers are declared
 2. Types
 3. Inheritance relationships
 4. Classes defined only once
 5. Methods in a class defined only once
 6. Reserved identifiers are not misused
 And others...
- The requirements depend on the language
Scope

• Matching identifier declarations with uses
 - Important static analysis step in most languages
 - Including COOL!

What’s Wrong?

• Example 1
 Let y: String ← “abc” in y + 3

• Example 2
 Let y: Int in x + 3

Note: An example property that is not context free.

Scope (Cont.)

• The scope of an identifier is the portion of a program in which that identifier is accessible
• The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don't overlap
• An identifier may have restricted scope

Static vs. Dynamic Scope

• Most languages have static scope
 - Scope depends only on the program text, not runtime behavior
 - Cool has static scope
• A few languages are dynamically scoped
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

let x: Int ← 0 in
{ x;
 let x: Int ← 1 in
 x;
 x;
}

Static Scoping Example (Cont.)

let x: Int ← 0 in
{ x;
 let x: Int ← 1 in
 x;
 x;
}

Uses of x refer to closest enclosing definition
Dynamic Scope

• A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program

• Example
g(y) = let a ← 4 in f(3);
f(x) = a

• More about dynamic scope later in the course

Scope in Cool

• Cool identifier bindings are introduced by
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object ids)
 - Formal parameters (introduce object ids)
 - Attribute definitions (introduce object ids)
 - Case expressions (introduce object ids)

Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-closely nested rule

• For example, class definitions in Cool
 - Cannot be nested
 - Are globally visible throughout the program

• In other words, a class name can be used before it is defined

Example: Use Before Definition

Class Foo {
 . . . let y: Bar in . . .
};

Class Bar {
 . . .
};

More Scope in Cool

Attribute names are global within the class in which they are defined

Class Foo {
 f(): Int { a; }
 a: Int ← 0;
}

More Scope (Cont.)

• Method/attribute names have complex rules

• A method need not be defined in the class in which it is used, but in some parent class

• Methods may also be redefined (overridden)
Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Before: Process an AST node \(n \)
 - Recurse: Process the children of \(n \)
 - After: Finish processing the AST node \(n \)

- When performing semantic analysis on a portion of the AST, we need to know which identifiers are defined

Implementing . . . (Cont.)

- Example: the scope of let bindings is one subtree of the AST:

 \[
 \text{let } x: \text{Int} \leftarrow 0 \text{ in } e
 \]

- \(x \) is defined in subtree \(e \)

Symbol Tables

- Consider again: let \(x: \text{Int} \leftarrow 0 \text{ in } e \)
- Idea:
 - Before processing \(e \), add definition of \(x \) to current definitions, overriding any other definition of \(x \)
 - Recurse
 - After processing \(e \), remove definition of \(x \) and restore old definition of \(x \)

- A symbol table is a data structure that tracks the current bindings of identifiers

A Simple Symbol Table Implementation

- Structure is a stack
- Operations
 - add_symbol(\(x \)): push \(x \) and associated info, such as \(x \)'s type, on the stack
 - find_symbol(\(x \)): search stack, starting from top, for \(x \). Return first \(x \) found or NULL if none found
 - remove_symbol(): pop the stack

- Why does this work?

Limitations

- The simple symbol table works for let
 - Symbols added one at a time
 - Declarations are perfectly nested
- What doesn’t it work for?

A Fancier Symbol Table

- enter_scope(): start a new nested scope
- find_symbol(\(x \)): finds current \(x \) (or null)
- add_symbol(\(x \)): add a symbol \(x \) to the table
- check_scope(\(x \)): true if \(x \) defined in current scope
- exit_scope(): exit current scope

We will supply a symbol table manager for your project
Class Definitions

- Class names can be used before being defined
- We can't check class names
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

```
add $r1, $r2, $r3
```

What are the types of $r1, $r2, $r3?

Types and Operations

- Certain operations are legal for values of each type
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Ensures intended interpretation of values, because nothing else will!

Type Checking Overview

- Three kinds of languages:
 - *Statically typed:* All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - *Dynamically typed:* Almost all checking of types is done as part of program execution (Scheme)
 - *Untyped:* No type checking (machine code)
The Type Wars

• Competing views on static vs. dynamic typing

• Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks

• Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping difficult within a static type system

The Type Wars (Cont.)

• In practice, code written in statically typed languages usually has an "escape" mechanism
 - Unsafe casts in C, Java

• It's debatable whether this compromise represents the best or worst of both worlds

Types Outline

• Type concepts in COOL

• Notation for type rules
 - Logical rules of inference

• COOL type rules

• General properties of type systems

Cool Types

• The types are:
 - Class Names
 - SELF_TYPE

• The user declares types for identifiers

• The compiler infers types for expressions
 - Infers a type for every expression

Type Checking and Type Inference

• Type Checking is the process of verifying fully typed programs

• Type Inference is the process of filling in missing type information

• The two are different, but the terms are often used interchangeably

Rules of Inference

• We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars

• The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?

- Inference rules have the form
 \(\text{If Hypothesis is true, then Conclusion is true} \)

- Type checking computes via reasoning
 \(\text{If } E_1 \text{ and } E_2 \text{ have certain types, then } E_3 \text{ has a certain type} \)

- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read with practice

- Start with a simplified system and gradually add features

- Building blocks
 - Symbol \(\land \) is "and"
 - Symbol \(\Rightarrow \) is "if-then"
 - \(x : T \) is "\(x \) has type \(T \)"

From English to an Inference Rule (2)

If \(e_1 \) has type \(\text{Int} \) and \(e_2 \) has type \(\text{Int} \), then \(e_1 + e_2 \) has type \(\text{Int} \)

\[
\begin{align*}
\text{(} & e_1 \text{ has type } \text{Int} \land e_2 \text{ has type } \text{Int}) \Rightarrow e_1 + e_2 \text{ has type } \text{Int} \\
\text{(} & e_1 \text{ : Int } \land e_2 : \text{Int}) \Rightarrow e_1 + e_2 : \text{Int}
\end{align*}
\]

From English to an Inference Rule (3)

The statement \((e_1 : \text{Int } \land e_2 : \text{Int}) \Rightarrow e_1 + e_2 : \text{Int} \) is a special case of

\[
\frac{\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n \Rightarrow \text{Conclusion}}{e_1 : \text{Int } \land e_2 : \text{Int} \Rightarrow e_1 + e_2 : \text{Int}}
\]

This is an inference rule.

Notation for Inference Rules

- By tradition inference rules are written
 \(\vdash \text{Hypothesis} \vdash \text{Hypothesis} \vdash \text{Conclusion} \)

- Cool type rules have hypotheses and conclusions
 \(\vdash e : T \)
 \(\vdash \) means "it is provable that . . ."

Two Rules

- \(i \) is an integer literal
 \[i \vdash i : \text{Int} \] \[\text{[Int]} \]

- \(e_1, e_2 \) are expressions
 \[e_1 : \text{Int} \vdash e_2 : \text{Int} \vdash e_1 + e_2 : \text{Int} \] \[\text{[Add]} \]
Two Rules (Cont.)

- These rules give templates describing how to type integers and $+$ expressions.
- By filling in the templates, we can produce complete typings for expressions.

Example: $1 + 2$

- 1 is an int literal
- 2 is an int literal
- $1 : \text{Int}$
- $2 : \text{Int}$
- $1 + 2 : \text{Int}$

Soundness

- A type system is sound if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others:
 - i is an integer literal
 - $\vdash i : \text{Object}$

Type Checking Proofs

- Type checking proves facts $e : T$
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e’s subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST

Rules for Constants

- $\vdash \text{false} : \text{Bool}$
 - [False]
- s is a string literal
 - $\vdash s : \text{String}$
 - [String]

Rule for New

- $\text{new } T$ produces an object of type T
 - Ignore SELF_TYPE for now . . .
- $\vdash \text{new } T : T$
 - [New]
Two More Rules

\[
\begin{align*}
\vdash e & : \text{Bool} \\
\vdash \neg e & : \text{Bool} \quad \text{[Not]} \\
\vdash e_1 & : \text{Bool} \\
\vdash e_2 & : \text{T} \\
\vdash \text{while } e_1 \text{ loop } e_2 \text{ pool: } \text{Object} & : \text{Object} \
\end{align*}
\]

A Problem

• What is the type of a variable reference?

\[
\begin{align*}
x & \text{ is a variable} \\
\vdash x & : \text{?} \quad \text{[Var]}
\end{align*}
\]

• The local, structural rule does not carry enough information to give \(x \) a type.

A Solution

• Put more information in the rules!

• A type environment gives types for free variables
 - A type environment is a function from ObjectIdentifiers to Types
 - A variable is free in an expression if it is not defined within the expression

Type Environments

Let \(O \) be a function from ObjectIdentifiers to Types

The sentence

\[
O \vdash e : \text{T}
\]

is read: Under the assumption that variables have the types given by \(O \), it is provable that the expression \(e \) has the type \(\text{T} \)

Modified Rules

The type environment is added to the earlier rules:

\[
\begin{align*}
\text{i is an integer literal} & \quad \text{[Int]} \\
O \vdash i & : \text{Int} \\
O \vdash e_1 & : \text{Int} \\
O \vdash e_2 & : \text{Int} \\
O \vdash e_1 + e_2 & : \text{Int} \quad \text{[Add]}
\end{align*}
\]

New Rules

And we can write new rules:

\[
\begin{align*}
O(x) & = \text{T} \\
\vdash x & : \text{T} \quad \text{[Var]}
\end{align*}
\]
Let

\[
O[T_0/x] \vdash e_1 : T_1 \quad \text{[Let-No-Init]}
\]

\[
O \vdash \text{let } x : T_0 \text{ in } e_1 : T_1
\]

\[O[T/y]\] means \(O\) modified to return \(T\) on argument \(y\)

Note that the \text{let}-rule enforces variable scope

Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Let with Initialization

Now consider \text{let} with initialization:

\[
O \vdash e_0 : T_0
\]

\[
O[T_0/x] \vdash e_1 : T_1 \quad \text{[Let-Init]}
\]

\[
\vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1
\]

This rule is weak. Why?

Subtyping

- Define a relation \(\leq\) on classes
 - \(X \leq X\)
 - \(X \leq Y\) if \(X\) inherits from \(Y\)
 - \(X \leq Z\) if \(X \leq Y\) and \(Y \leq Z\)

- An improvement

\[
O \vdash e_0 : T_0
\]

\[
O[T/x] \vdash e_1 : T_1
\]

\[
T_1 \leq T_0
\]

\[
\vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1
\]

Assignment

- Both \text{let} rules are sound, but more programs typecheck with the second one
- More uses of subtyping:

\[
O(x) = T_0
\]

\[
O \vdash e_i : T_1 \quad \text{[Assign]}
\]

\[
T_1 \leq T_0
\]

\[
\vdash x \leftarrow e_i : T_1
\]

Initialized Attributes

- Let \(O_C(x) = T\) for all attributes \(x : T\) in class \(C\)
- Attribute initialization is similar to \text{let}, except for the scope of names

\[
O_C(x) = T_0
\]

\[
O_C \vdash e_i : T_1
\]

\[
T_1 \leq T_0
\]

\[
\vdash x \leftarrow T_0 \leftarrow e_i
\]

\[
O_C \vdash \text{let } x : T_0 \leftarrow e_i
\]

\[
\]
If-Then-Else

- Consider:
 - if \(e_0 \) then \(e_1 \) else \(e_2 \) fi
- The result can be either \(e_1 \) or \(e_2 \)
- The type is either \(e_1 \)'s type or \(e_2 \)'s type
- The best we can do is the smallest supertype larger than the type of \(e_1 \) or \(e_2 \)

Least Upper Bounds

- lub(\(X, Y \)), the least upper bound of \(X \) and \(Y \), is \(Z \) if
 - \(X \leq Z \) and \(Y \leq Z \)
 - \(Z \) is an upper bound
 - \(X \leq Z' \) and \(Y \leq Z' \) \(\Rightarrow Z \leq Z' \)
 - \(Z \) is least among upper bounds
- In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

\[
\begin{align*}
O \vdash e_0 : \mathbf{Bool} \\
O \vdash e_1 : T_1 \\
O \vdash e_2 : T_2
\end{align*}
\]

\[O \vdash \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi: lub}(T_1, T_2) \]

Case

- The rule for case expressions takes a lub over all branches

\[
\begin{align*}
O \vdash e_0 : T_0 \\
O[T_{i}/x_i] \vdash e_i : T_i \\
\vdots \\
O[T_{n}/x_n] \vdash e_n : T_n
\end{align*}
\]

\[
O \vdash \text{case } e_0 \text{ of } x_1 : T_1 \rightarrow e_1 \; ; \; \ldots \; ; x_n : T_n \rightarrow e_n \; ; \; \text{esac : lub}(T_1, \ldots, T_n)
\]

Method Dispatch

- There is a problem with type checking method calls:

\[
\begin{align*}
O \vdash e_0 : T_0 \\
O \vdash e_1 : T_1 \\
\ldots \\
O \vdash e_n : T_n
\end{align*}
\]

\[
O \vdash e_0.f(e_1, \ldots, e_n) : ?
\]

Notes on Dispatch

- In Cool, method and object identifiers live in different name spaces
 - A method \(\text{foo} \) and an object \(\text{foo} \) can coexist in the same scope
- In the type rules, this is reflected by a separate mapping \(M \) for method signatures

\[
M(C,f) = (T_{i_1}, \ldots, T_{i_m}, T_{n_1})
\]

means in class \(C \) there is a method \(f \)

\[
f(x_1 : T_{i_1}, \ldots, x_{n_1} : T_{n_1}) : T_{n_1}
\]
The Dispatch Rule Revisited

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\ldots \]
\[O, M \vdash e_n : T_n \]
\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}) \]
\[T_i \leq T_i' \text{ for } 1 \leq i \leq n \] \[\text{[Dispatch]} \]
\[O, M \vdash e_0.f(e_1, \ldots, e_n) : T_{n+1} \]

Static Dispatch

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type

Static Dispatch (Cont.)

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\ldots \]
\[O, M \vdash e_n : T_n \]
\[T_0 \leq T \]
\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}) \]
\[T_i \leq T_i' \text{ for } 1 \leq i \leq n \] \[\text{[Dispatch]} \]
\[O, M \vdash e_0@T.f(e_1, \ldots, e_n) : T_{n+1} \]

The Method Environment

- The method environment must be added to all rules
- In most cases, \(M \) is passed down but not actually used
 - Only the dispatch rules use \(M \)

\[O, M \vdash e_1 : \text{Int} \]
\[O, M \vdash e_2 : \text{Int} \]
\[O, M \vdash e_1 + e_2 : \text{Int} \] \[\text{[Add]} \]

More Environments

- For some cases involving \texttt{SELF_TYPE}, we need to know the class in which an expression appears
- The full type environment for \texttt{COOL}:
 - A mapping \(O \) giving types to object id's
 - A mapping \(M \) giving types to methods
 - The current class \(C \)

Sentences

The form of a \textit{sentence} in the logic is \(O, M, C \vdash e : T \)

Example:

\[O, M, C \vdash e_1 : \text{Int} \]
\[O, M, C \vdash e_2 : \text{Int} \]
\[O, M, C \vdash e_1 + e_2 : \text{Int} \] \[\text{[Add]} \]
Type Systems

- The rules in this lecture are COOL-specific
 - More info on rules for self next time
 - Other languages have very different rules
- General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Warning: Type rules are very compact!

One-Pass Type Checking

- COOL type checking can be implemented in a single traversal over the AST
 - Type environment is passed down the tree
 - From parent to child
 - Types are passed up the tree
 - From child to parent

Implementing Type Systems

\[\text{TypeCheck}(\text{Environment}, e_1 + e_2) = \{
\text{T}_1 = \text{TypeCheck}(\text{Environment}, e_1);
\text{T}_2 = \text{TypeCheck}(\text{Environment}, e_2);
\text{Check } \text{T}_1 == \text{T}_2 == \text{Int};
\text{return Int;} \} \]