Implementation of Lexical Analysis

Lecture 4

Written Assignments

- WA1 assigned today
- Due in one week
 - 11:59pm
 - Electronic hand-in

Tips on Building Large Systems

- KISS (Keep It Simple, Stupid!)
- Don’t optimize prematurely
- Design systems that can be tested
- It is easier to modify a working system than to get a system working

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 - RegExp ⇒ NFA ⇒ DFA ⇒ Tables

Notation

- There is variation in regular expression notation
 - Union: \(A | B \) = \(A + B \)
 - Option: \(A + \epsilon \) = \(A? \)
 - Range: \('a'+'b'+...+'z' \) = \([a-z]\)
 - Excluded range: complement of \([a-z]\) = \([\^a-z]\)

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate \(s \in L(R) \)
- But a yes/no answer is not enough!
- Instead: partition the input into tokens
- We adapt regular expressions to this goal
Regular Expressions => Lexical Spec. (1)

1. Write a rexp for the lexemes of each token
 • Number = digit +
 • Keyword = 'if' + 'else' + …
 • Identifier = letter(letter + digit)*
 • OpenPar = '('
 • …

Regular Expressions => Lexical Spec. (2)

2. Construct \(R \), matching all lexemes for all tokens
 \[R = \text{Keyword} + \text{Identifier} + \text{Number} + … \]
 \[= R_1 + R_2 + … \]

Regular Expressions => Lexical Spec. (3)

3. Let input be \(x_1…x_n \)
 For 1 ≤ i ≤ n check
 \(x_1…x_i \in L(R) \)

4. If success, then we know that
 \(x_1…x_i \in L(R_j) \) for some \(j \)

5. Remove \(x_1…x_i \) from input and go to (3)

Ambiguities (1)

• There are ambiguities in the algorithm
• How much input is used? What if
 • \(x_1…x_j \in L(R) \) and also
 • \(x_1…x_k \in L(R) \)
• Rule: Pick longest possible string in \(L(R) \)
 - The “maximal munch”

Ambiguities (2)

• Which token is used? What if
 • \(x_1…x_j \in L(R) \) and also
 • \(x_1…x_k \in L(R) \)
• Rule: use rule listed first (\(j \) if \(j < k \))
 - Treats “if” as a keyword, not an identifier

Error Handling

• What if
 • No rule matches a prefix of input?
 • Problem: Can’t just get stuck …
• Solution:
 - Write a rule matching all “bad” strings
 - Put it last (lowest priority)
Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet \(\Sigma \)
 - A set of states \(S \)
 - A start state \(s_0 \)
 - A set of accepting states \(F \subseteq S \)
 - A set of transitions \(\text{state } \rightarrow \text{input state} \)

Finite Automata

- Transition \(s_1 \rightarrow a s_2 \)
- Is read
 - In state \(s_1 \) on input “a” go to state \(s_2 \)
- If end of input and in accepting state => accept
- Otherwise => reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

A Simple Example

- A finite automaton that accepts only “1”

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?

Epsilon Moves

- Another kind of transition: \(\varepsilon\)-moves

\[A \xrightarrow{\varepsilon} B \]

- Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon\)-moves

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon\)-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make \(\varepsilon\)-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

\[0 \xrightarrow{1} 0 \xrightarrow{1} 0 \]

- Input: 1 0 0
- Rule: NFA accepts if it can get to a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language NFA can be simpler than DFA

NFA

DFA

- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp \(\mathcal{M} \)
 - For \(\epsilon \)
 - For input \(a \)

Regular Expressions to NFA (2)

- For \(\mathcal{A} \text{ and } \mathcal{B} \)
 - For \(\mathcal{A} + \mathcal{B} \)

Regular Expressions to NFA (3)

- For \(\mathcal{A}^* \)

Example of RegExp -> NFA conversion

- Consider the regular expression \((1+0)^*1\)
 - The NFA is
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA = a non-empty subset of states of the NFA
- Start state = the set of NFA states reachable through ε-moves from NFA start state
- Add a transition \(S \rightarrow^a S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from any state in \(S \) after seeing the input \(a \), considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are \(N \) states, the NFA must be in some subset of those \(N \) states
- How many subsets are there?
 - \(2^N - 1 \) = finitely many

Implementation

- A DFA can be implemented by a 2D table \(T \)
 - One dimension is “states”
 - Other dimension is “input symbol”
 - For every transition \(S_i \rightarrow^a S_k \) define \(T[i,a] = k \)
- DFA “execution”
 - If in state \(S_i \) and input \(a \), read \(T[i,a] = k \) and skip to state \(S_k \)
 - Very efficient

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations