Implementation of Lexical Analysis

Lecture 4

Written Assignments

• WA1 assigned today
• Due in one week
 - 11:59pm
 - Electronic hand-in

Tips on Building Large Systems

• KISS (Keep It Simple, Stupid!)
• Don’t optimize prematurely
• Design systems that can be tested
• It is easier to modify a working system than to get a system working

Outline

• Specifying lexical structure using regular expressions
• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
• Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

• There is variation in regular expression notation
• Union: \[A | B \] = \[A + B \]
• Option: \[A + \epsilon \] = \[A? \]
• Range: \['a'+ 'b'+...+'z' \] = \[[a-z] \]
• Excluded range: complement of \[[a-z] \] = \[[^a-z] \]

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate \[s \in L(R) \]
• But a yes/no answer is not enough!
• Instead: partition the input into tokens
• We adapt regular expressions to this goal
Regular Expressions => Lexical Spec. (1)

1. Write a rexp for the lexemes of each token
 - Number = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter(letter + digit)*
 - OpenPar = '('
 - ...

Regular Expressions => Lexical Spec. (2)

2. Construct R, matching all lexemes for all tokens
 \[R = \text{Keyword} + \text{Identifier} + \text{Number} + ... \]
 \[= R_1 + R_2 + ... \]

Regular Expressions => Lexical Spec. (3)

3. Let input be \(x_1 \ldots x_n \)
 For \(1 \leq i \leq n \) check \(x_1 \ldots x_i \in L(R) \)
4. If success, then we know that \(x_1 \ldots x_i \in L(R_j) \) for some \(j \)
5. Remove \(x_1 \ldots x_i \) from input and go to (3)

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - \(x_1 \ldots x_i \in L(R) \) and also
 - \(x_1 \ldots x_k \in L(R) \)
- Rule: Pick longest possible string in \(L(R) \)
 - The “maximal munch”

Ambiguities (2)

- Which token is used? What if
 - \(x_1 \ldots x_i \in L(R) \) and also
 - \(x_1 \ldots x_k \in L(R) \)
- Rule: use rule listed first (\(j \) if \(j < k \))
 - Treats “if” as a keyword, not an identifier

Error Handling

- What if
 - No rule matches a prefix of input?
 - Problem: Can’t just get stuck ...
- Solution:
 - Write a rule matching all “bad” strings
 - Put it last (lowest priority)
Summary
- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata
- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions $s \rightarrow a \rightarrow s'$

Finite Automata
- A state
- The start state
- An accepting state
- A transition

A Simple Example
- A finite automaton that accepts only “1”

Another Simple Example
- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}
And Another Example

- Alphabet \(\{0, 1\} \)
- What language does this recognize?

Epsilon Moves

- Another kind of transition: \(\varepsilon \)-moves

\[A \xrightarrow{\varepsilon} B \]

- Machine can move from state \(A \) to state \(B \) without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon \)-moves

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon \)-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make \(\varepsilon \)-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

\[0 \xrightarrow{0} 1 \xrightarrow{1} 0 \]

- Input: 1 0 0

Rule: NFA accepts if it can get to a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language NFA can be simpler than DFA

```
NFA
  .          .
  |          |
  0          1
  .          .
  |          |
  0          1
  .          .
  |          |
  0          1
```

- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

```
NFA
  .          .
  |          |
  0          1
  .          .
  |          |
  0          1
```

```
Lexical
Specification
```

```
Table-driven
Implementation of DFA
```

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp M

```
M
  .
```

- For ε

```
ε
  .
```

- For input a

```
a
  .
```

Regular Expressions to NFA (2)

- For AB

```
A
  E
  B
```

- For A + B

```
A
  E
  B
```

Regular Expressions to NFA (3)

- For A*

```
A
  E
  A
  E
```

Example of RegExp -> NFA conversion

- Consider the regular expression

```
(1+0)*1
```

- The NFA is

```
A
  E
  B
  0
  G
  E
  D
  F
  E
  C
  E
  A
```

```
E
```

```
I
J
```
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - a non-empty subset of states of the NFA
- Start state
 - the set of NFA states reachable through ε-moves from NFA start state
- Add a transition \(S \rightarrow a S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from any state in \(S \) after seeing the input \(a \), considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are \(N \) states, the NFA must be in some subset of those \(N \) states
- How many subsets are there?
 - \(2^N - 1 \) = finitely many

Implementation

- A DFA can be implemented by a 2D table \(T \)
 - One dimension is “states”
 - Other dimension is “input symbol”
 - For every transition \(S_i \rightarrow a S_k \), define \(T[i,a] = k \)
- DFA “execution”
 - If in state \(S_i \) and input \(a \), read \(T[i,a] = k \) and skip to state \(S_k \)
 - Very efficient

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations