Implementation of Lexical Analysis

Lecture 4

Written Assignments

- WA1 assigned today
- Due in one week
 - 11:59pm
 - Electronic hand-in

Tips on Building Large Systems

- KISS (Keep It Simple, Stupid!)
- Don’t optimize prematurely
- Design systems that can be tested
- It is easier to modify a working system than to get a system working

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 - RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables
Notation

- There is variation in regular expression notation
 - Union: \(A \cup B \equiv A + B \)
 - Option: \(A + \varepsilon \equiv A? \)
 - Range: ‘\(a \)’ + ‘\(b \)’ + ... + ‘\(z \)’ = [a-z]
 - Excluded range: complement of [a-z] =[^a-z]

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate \(s \in L(R) \)
- But a yes/no answer is not enough!
- Instead: partition the input into tokens
- We adapt regular expressions to this goal

Regular Expressions => Lexical Spec. (1)

1. Write a rexp for the lexemes of each token
 - Number = digit +
 - Keyword = ‘if’ + ‘else’ + ...
 - Identifier = letter (letter + digit)*
 - OpenPar = ‘(‘
 - ...

Regular Expressions => Lexical Spec. (2)

2. Construct \(R \), matching all lexemes for all tokens
 \[R = \text{Keyword} + \text{Identifier} + \text{Number} + ... = R_1 + R_2 + ... \]
Regular Expressions => Lexical Spec. (3)

3. Let input be $x_1 \ldots x_n$
 For $1 \leq i \leq n$ check
 $x_1 \ldots x_i \in L(R)$

4. If success, then we know that
 $x_1 \ldots x_i \in L(R_j)$ for some j

5. Remove $x_1 \ldots x_i$ from input and go to (3)

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - $x_1 \ldots x_i \in L(R)$ and also
 - $x_1 \ldots x_k \in L(R)$
- Rule: Pick longest possible string in $L(R)$
 - The “maximal munch”

Ambiguities (2)

- Which token is used? What if
 - $x_1 \ldots x_i \in L(R_j)$ and also
 - $x_1 \ldots x_i \in L(R_k)$
- Rule: use rule listed first (j if $j < k$)
 - Treats “if” as a keyword, not an identifier

Error Handling

- What if
 No rule matches a prefix of input?
- Problem: Can’t just get stuck ...
- Solution:
 - Write a rule matching all “bad” strings
 - Put it last (lowest priority)
Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet \(\Sigma \)
 - A set of states \(S \)
 - A start state \(n \)
 - A set of accepting states \(F \subseteq S \)
 - A set of transitions \(s \to a \to s' \)

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

- A finite automaton that accepts only “1”

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}

And Another Example

- Alphabet \{0,1\}
- What language does this recognize?

Epsilon Moves

- Another kind of transition: \(\varepsilon\)-moves
- Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

- Input: 1 0 0
 Rule: NFA accepts if it can get to a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language NFA can be simpler than DFA
- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp M
 - For ε
 - For input a

Regular Expressions to NFA (2)

- For AB
- For $A + B$
Regular Expressions to NFA (3)

- For A^*

Example of RegExp -> NFA conversion

- Consider the regular expression $(1+0)^*1$

- The NFA is

NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - a non-empty subset of states of the NFA
- Start state
 - the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N - 1 = \text{finitely many}$
NFA -> DFA Example

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow a S_k$ define $T[i,a] = k$

- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient

Table Implementation of a DFA

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex

- But, DFAs can be huge

- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations