Error Handling
Syntax-Directed Translation
Recursive Descent Parsing

Lecture 6

Instructor: Fredrik Kjolstad
Slides based on slides designed by Prof. Alex Aiken
Announcements

• **PA1 & WA1**
 - Due today at midnight

• **PA2 & WA2**
 - Assigned today
Outline

• Extensions of CFG for parsing
 - Precedence declarations
 - Error handling
 - Semantic actions

• Constructing a parse tree

• Recursive descent
Error Handling

• Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones

• Many kinds of possible errors (e.g. in C)

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example</th>
<th>Detected by …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>… $ …</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>… x *% …</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>… int x; y = x(3); …</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>
Syntax Error Handling

- Error handler should
 - Report errors accurately and clearly
 - Recover from an error quickly
 - Not slow down compilation of valid code

- Good error handling is not easy to achieve
Approaches to Syntax Error Recovery

• From simple to complex
 - Panic mode
 - Error productions
 - Automatic local or global correction

• Not all are supported by all parser generators
Error Recovery: Panic Mode

• Simplest, most popular method

• When an error is detected:
 - Discard tokens until one with a clear role is found
 - Continue from there

• Such tokens are called synchronizing tokens
 - Typically the statement or expression terminators
Syntax Error Recovery: Panic Mode (Cont.)

• Consider the erroneous expression
 \((1 + + 2) + 3\)

• Panic-mode recovery:
 – Skip ahead to next integer and then continue

• Bison: use the special terminal `error` to describe how much input to skip
 \[E \rightarrow \text{int} | E + E | (E) | \text{error int} | (\text{error}) \]
Syntax Error Recovery: Error Productions

• Idea: specify in the grammar known common mistakes

• Essentially promotes common errors to alternative syntax

• Example:
 - Write $5 \times$ instead of $5 \ast x$
 - Add the production $E \rightarrow \ldots | E \ E$

• Disadvantage
 - Complicates the grammar
Error Recovery: Local and Global Correction

- Idea: find a correct “nearby” program
 - Try token insertions and deletions
 - Exhaustive search

- Disadvantages:
 - Hard to implement
 - Slows down parsing of correct programs
 - “Nearby” is not necessarily “the intended” program
 - Not all tools support it
Syntax Error Recovery: Past and Present

• Past
 - Slow recompilation cycle (even once a day)
 - Find as many errors in one cycle as possible
 - Researchers could not let go of the topic

• Present
 - Quick recompilation cycle
 - Users tend to correct one error/cycle
 - Complex error recovery is less compelling
 - Panic-mode seems enough
Abstract Syntax Trees

- So far a parser traces the derivation of a sequence of tokens

- The rest of the compiler needs a structural representation of the program

- **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST
Consider the grammar

\[E \rightarrow \text{int} \mid (E) \mid E + E \]

And the string

\[5 + (2 + 3) \]

After lexical analysis (a list of tokens)

\[\text{int}_5 \ '+' \ '(' \text{int}_2 \ '+' \text{int}_3 \ ')' \]

During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 => more compact and easier to use
- An important data structure in a compiler
Semantic Actions

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \)
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar

 $E \rightarrow \text{int} \mid E + E \mid (E)$

• For each symbol X define an attribute $X.val$
 - For terminals, val is the associated lexeme
 - For non-terminals, val is the expression’s value (and is computed from values of subexpressions)

• We annotate the grammar with actions:

 $E \rightarrow \text{int} \quad \{ E.val = \text{int}.val \}$
 $\mid E_1 + E_2 \quad \{ E.val = E_1.val + E_2.val \}$
 $\mid (E_1) \quad \{ E.val = E_1.val \}$
Semantic Actions: An Example (Cont.)

- String: \(5 + (2 + 3) \)
- Tokens: \(\text{int}_5 \ ' + ' \ '(' \text{int}_2 \ ' + ' \text{int}_3 \ ')' \)

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>(E.\text{val} = E_1.\text{val} + E_2.\text{val})</td>
</tr>
<tr>
<td>(E_1 \rightarrow \text{int}_5)</td>
<td>(E_1.\text{val} = \text{int}_5.\text{val} = 5)</td>
</tr>
<tr>
<td>(E_2 \rightarrow (E_3))</td>
<td>(E_2.\text{val} = E_3.\text{val})</td>
</tr>
<tr>
<td>(E_3 \rightarrow E_4 + E_5)</td>
<td>(E_3.\text{val} = E_4.\text{val} + E_5.\text{val})</td>
</tr>
<tr>
<td>(E_4 \rightarrow \text{int}_2)</td>
<td>(E_4.\text{val} = \text{int}_2.\text{val} = 2)</td>
</tr>
<tr>
<td>(E_5 \rightarrow \text{int}_3)</td>
<td>(E_5.\text{val} = \text{int}_3.\text{val} = 3)</td>
</tr>
</tbody>
</table>
Semantic Actions: Notes

• Semantic actions specify a system of equations

• Declarative Style
 - Order of resolution is not specified
 - The parser figures it out

• Imperative Style
 - The order of evaluation is fixed
 - Important if the actions manipulate global state
Semantic Actions: Notes

• We’ll explore actions as pure equations
 - Style 1
 - But note bison has a fixed order of evaluation for actions

• Example:
 \[E_3.\text{val} = E_4.\text{val} + E_5.\text{val} \]
 - Must compute \(E_4.\text{val} \) and \(E_5.\text{val} \) before \(E_3.\text{val} \)
 - We say that \(E_3.\text{val} \) depends on \(E_4.\text{val} \) and \(E_5.\text{val} \)
Each node labeled E has one slot for the val attribute

Note the dependencies
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Dependency Graph

\[E = (E_3 + E_4 + E_5) \]

\[E_3 = E_1 + E_2 \]

\[E_1 = \text{int}_5 + 5 \]

\[E_2 = 5 \]

\[E_3 = (E_4 + E_5) \]

\[E_4 = \text{int}_2 + 2 \]

\[E_5 = \text{int}_3 + 3 \]
Semantic Actions: Notes (Cont.)

• **Synthesized** attributes
 - Calculated from attributes of descendents in the parse tree
 - \textit{E.val} is a synthesized attribute
 - Can always be calculated in a bottom-up order

• **Grammars with only synthesized attributes** are called \textit{S-attributed grammars}
 - Most common case
Inherited Attributes

• Another kind of attribute

• Calculated from attributes of parent and/or siblings in the parse tree

• Example: a line calculator
A Line Calculator

• Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
• Each line is terminated with the \(= \) sign
 \[L \rightarrow E = \mid + E = \]

• In second form the value of previous line is used as starting value
• A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \, L \]
Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has an attribute val

 $L \rightarrow E = \{ L.val = E.val \}$

 $| + E = \{ L.val = E.val + L.prev \}$

- We need the value of the previous line
- We use an inherited attribute $L.prev$
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line

 $P \rightarrow \varepsilon$ \hspace{1cm} \{ $P.val = 0$ \}

 $| \quad P_1 L$ \hspace{1cm} \{ $P.val = L.val;$ \}

 $\hspace{1cm} L.prev = P_1.val$ \}

 - Each L has an inherited attribute $prev$
 - $L.prev$ is inherited from sibling $P_1.val$

• Example ...
Example of Inherited Attributes

- \textit{val} synthesized
- \textit{prev} inherited
- All can be computed in depth-first order
Example of Inherited Attributes

- **val synthesized**
- **prev inherited**
- **All can be computed in depth-first order**

\[
P + E_3 = E_4 + E_5\]

\[
\begin{array}{c}
P = 5 \\
E_3 = 5 \\
E_4 = 2 \\
E_5 = 3 \\
\end{array}
\]

\[
\begin{array}{c}
\text{int}_2 = 2 \\
\text{int}_3 = 3 \\
\end{array}
\]
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 – Also used for type checking, code generation, ...

• Process is called syntax-directed translation
 – Substantial generalization over CFGs
Constructing an AST

• **We first define the AST data type**
 - Supplied by us for the project

• **Consider an abstract tree type with two constructors:**

\[
\text{mkleaf}(n) = \begin{cases} n \\ \text{PLUS} \end{cases}
\]

\[
\text{mkplus}(T_1, T_2) = T_1 \text{ PLUS } T_2
\]
Constructing an AST

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int.lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad E.\text{ast} = \text{mkleaf}(\text{int.lexval})
\]
\[
| E_1 + E_2 \quad E.\text{ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast})
\]
\[
| (E_1) \quad E.\text{ast} = E_1.\text{ast}
\]
Parse Tree Example

- Consider the string $\text{int}_5 \ '+\ ' (\ ' \text{int}_2 \ '+\ ' \text{int}_3 \ ')'$
- A bottom-up evaluation of the ast attribute:

\[
E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \\
\text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
\]
Summary

• We can specify language syntax using CFG

• A parser will answer whether $s \in L(G)$
 - ... and will build a parse tree
 - ... which we convert to an AST
 - ... and pass on to the rest of the compiler
Intro to Top-Down Parsing: The Idea

• The parse tree is constructed
 - From the top
 - From left to right

• Terminals are seen in order of appearance in the token stream:

```
  t_2  t_5  t_6  t_8  t_9
```
Recursive Descent Parsing

• Consider the grammar

 \[
 E \rightarrow T \mid T + E \\
 T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
 \]

• Token stream is: \((\text{int}_5)\)

• Start with top-level non-terminal \(E\)
 - Try the rules for \(E\) in order
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \times T \mid (E) \]

\[
\begin{array}{c}
E \\
| \\
T \\
| \\
(int_5)
\end{array}
\]
Recursive Descent Parsing

\[
E \rightarrow T | T + E \\
T \rightarrow \text{int} | \text{int} \ast T | (E)
\]

Mismatch: int is not (!
Backtrack ...
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \times T \mid (E) \]

(\(\text{int}_5 \))
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\]

Mismatch: int is not (!)
Backtrack ...

(\text{int}_5)
Recursive Descent Parsing

\[
E \rightarrow T | T + E \\
T \rightarrow \text{int} | \text{int} \times T | (E)
\]
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} * T | (E) \]

```
(int 5)
```

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\((\text{int}_5) \uparrow \)

Match! Advance input.
Recursive Descent Parsing

\[
E \to T \mid T + E \\
T \to \text{int} \mid \text{int} \ast T \mid (E)
\]

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

End of input, accept.
A Recursive Descent Parser. Preliminaries

• Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token
A (Limited) Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal
 \[
 \text{bool } \text{term(TOKEN tok)} \{ \text{return } *\text{next++} == \text{tok; } \}
 \]
 - The nth production of S:
 \[
 \text{bool } S_n() \{ \ldots \}
 \]
 - Try all productions of S:
 \[
 \text{bool } S() \{ \ldots \}
 \]
A (Limited) Recursive Descent Parser (3)

• For production $E \rightarrow T$

 bool $E_1()$ { return $T()$; }

• For production $E \rightarrow T + E$

 bool $E_2()$ { return $T()$ && term(PLUS) && $E()$; }

• For all productions of E (with backtracking)

 bool $E()$ {
 TOKEN *save = next;
 return (next = save, $E_1()$) || (next = save, $E_2()$);
 }
A (Limited) Recursive Descent Parser (4)

- Functions for non-terminal T

```c
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }

bool T() {
    TOKEN *save = next;
    return    (next = save, T_1())
          || (next = save, T_2())
          || (next = save, T_3()); }
```
Recursive Descent Parsing. Notes.

• To start the parser
 - Initialize `next` to point to first token
 - Invoke `E()`

• Notice how this simulates the example parse

• Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal
Example

\[
\begin{align*}
E & \rightarrow T \mid T + E \\
T & \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\end{align*}
\]

(bool term(TOKEN tok) { return *next++ == tok; })

(bool E1() { return T(); })
(bool E2() { return T() && term(PLUS) && E(); })

(bool E() { TOKEN *save = next; return (next = save, E1()) || (next = save, E2()); })

(bool T1() { return term(INT); })
(bool T2() { return term(INT) && term(TIMES) && T(); })
(bool T3() { return term(OPEN) && E() && term(CLOSE); })

(bool T() { TOKEN *save = next; return (next = save, T1()) || (next = save, T2()) || (next = save, T3()); })
When Recursive Descent Does Not Work

• Consider a production $S \rightarrow S \alpha$

  ```cpp
  bool S_1() { return S() && term(a); }
  bool S() { return S_1(); }
  ```

• $S()$ goes into an infinite loop

• A left-recursive grammar has a non-terminal S

 $S \rightarrow^+ S\alpha$ for some α

• Recursive descent does not work in such cases
Elimination of Left Recursion

Consider the left-recursive grammar

\[S \rightarrow S\alpha \mid \beta \]

\(S \) generates all strings starting with a \(\beta \) and followed by a number of \(\alpha \)

Can rewrite using right-recursion

\[S \rightarrow \beta S' \]
\[S' \rightarrow \alpha S' \mid \varepsilon \]
More Elimination of Left-Recursion

• In general

 \[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

 \[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]

 \[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \varepsilon \]
General Left Recursion

- The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^+ S \beta \alpha \]

- This left-recursion can also be eliminated

- See Dragon Book for general algorithm
 - Section 4.3
Summary of Recursive Descent

• Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

• Historically unpopular because of backtracking
 - Thought to be too inefficient
 - Fast and simple on modern machines

• In practice, backtracking is eliminated by restricting the grammar