Error Handling
Syntax-Directed Translation
Recursive Descent Parsing

CS143
Lecture 6

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Announcements

- PA1 & WA1
 - Due today at midnight

- PA2 & WA2
 - Assigned today
Outline

• Extensions of CFG for parsing
 – Precedence declarations
 – Error handling
 – Semantic actions

• Constructing an abstract syntax tree (AST)

• Recursive descent parsing
Error Handling

• Purpose of the compiler is
 – To detect non-valid programs
 – To translate the valid ones

• Many kinds of possible errors

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example (C)</th>
<th>Detected by …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>… $ …</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>… x *% …</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>… int x; y = x(3); …</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>
Syntax Error Handling

• Error handler should
 – Report errors accurately and clearly
 – Recover from an error quickly
 – Not slow down compilation of valid code

• Good error handling is not easy to achieve
Syntax Error Recovery

• Approaches from simple to complex
 – Panic mode
 – Error productions
 – Automatic local or global correction

• Not all are supported by all parser generators
Error Recovery: Panic Mode

• Simplest, most popular method

• When an error is detected:
 – Discard tokens until one with a clear role is found
 – Continue from there

• Such tokens are called synchronizing tokens
 – Typically the statement or expression terminators
Error Recovery: Panic Mode (Cont.)

• Consider the erroneous expression
 \((1 + + 2) + 3\)

• Panic-mode recovery:
 – Skip ahead to next integer and then continue

• Bison: use the special terminal `error` to describe how much input to skip

\[
E \rightarrow \text{int} \mid E + E \mid (E) \mid \text{error} \mid \text{int} \mid (\text{error})
\]
Error Recovery: Error Productions

• Idea: specify in the grammar known common mistakes

• Essentially promotes common errors to alternative syntax

• Example:
 – Write $5 \times x$ instead of $5 \times x$
 – Add the production $E \rightarrow \ldots \mid E \ E$

• Disadvantage
 – Complicates the grammar
Error Recovery: Local and Global Correction

• Idea: find a correct “nearby” program
 – Try token insertions and deletions
 – Exhaustive search

• Disadvantages:
 – Hard to implement
 – Slows down parsing of correct programs
 – “Nearby” is not necessarily “the intended” program
 – Not supported by most tools
Syntax Error Recovery: Past and Present

• Past
 – Slow recompilation cycle (even once a day)
 – Find as many errors in one cycle as possible
 – Researchers could not let go of the topic

• Present
 – Quick recompilation cycle
 – Users tend to correct one error/cycle
 – Complex error recovery is less compelling
 – Panic-mode seems enough
Abstract Syntax Trees

• So far a parser traces the derivation of a sequence of tokens

• The rest of the compiler needs a structural representation of the program

• Abstract syntax trees
 – Like parse trees but ignore some details
 – Abbreviated as AST
Abstract Syntax Trees (Cont.)

• Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]

• And the string
 \[5 + (2 + 3) \]

• After lexical analysis (a list of tokens)
 \[\text{int}_5 \text{+} \text{int}_2 \text{+} \text{int}_3 \]

• During parsing we build a parse tree …
Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But **abstracts** from the concrete syntax
 => more compact and easier to use
- An important data structure in a compiler
Semantic Actions Extension to CFGs

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
 – For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 – Written as $X \rightarrow Y_1 \ldots Y_n \{ \text{action} \}$
 – That can refer to or compute symbol attributes
Semantic Actions: Example

• Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol \(X \) define an attribute \(X.val \)
 – For terminals, \(\text{val} \) is the associated lexeme
 – For non-terminals, \(\text{val} \) is the expression’s value (and is computed from values of subexpressions)

• We annotate the grammar with actions:
 \[
 \begin{align*}
 E &\rightarrow \text{int} \quad \{ \text{E.val} = \text{int.val} \} \\
 &\mid E_1 + E_2 \quad \{ \text{E.val} = E_1.val + E_2.val \} \\
 &\mid (E_1) \quad \{ \text{E.val} = E_1.val \}
 \end{align*}
 \]
Semantic Actions: Example (Cont.)

• String: $5 + (2 + 3)$
• Tokens: $\text{int}_5 \ ‘+’ \ (‘ \text{int}_2 \ ‘+’ \text{int}_3 \ ‘)$

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \rightarrow E_1 + E_2$</td>
<td>$E.\text{val} = E_1.\text{val} + E_2.\text{val}$</td>
</tr>
<tr>
<td>$E_1 \rightarrow \text{int}_5$</td>
<td>$E_1.\text{val} = \text{int}_5.\text{val} = 5$</td>
</tr>
<tr>
<td>$E_2 \rightarrow (E_3)$</td>
<td>$E_2.\text{val} = E_3.\text{val}$</td>
</tr>
<tr>
<td>$E_3 \rightarrow E_4 + E_5$</td>
<td>$E_3.\text{val} = E_4.\text{val} + E_5.\text{val}$</td>
</tr>
<tr>
<td>$E_4 \rightarrow \text{int}_2$</td>
<td>$E_4.\text{val} = \text{int}_2.\text{val} = 2$</td>
</tr>
<tr>
<td>$E_5 \rightarrow \text{int}_3$</td>
<td>$E_5.\text{val} = \text{int}_3.\text{val} = 3$</td>
</tr>
</tbody>
</table>
Semantic Actions: Notes

- Semantic actions specify a system of equations

- **Declarative Style**
 - Order of resolution is not specified
 - The parser figures it out

- **Imperative Style**
 - The order of evaluation is fixed
 - Important if the actions manipulate global state
Semantic Actions: Notes

• We’ll explore actions as pure equations
 – But note bison has a fixed order of evaluation for actions

• Example:
 \[E_3.\text{val} = E_4.\text{val} + E_5.\text{val} \]
 – Must compute \(E_4.\text{val} \) and \(E_5.\text{val} \) before \(E_3.\text{val} \)
 – We say that \(E_3.\text{val} \) depends on \(E_4.\text{val} \) and \(E_5.\text{val} \)
Dependency Graph

- Each node labeled E has one slot for the \textit{val} attribute
- Note the dependencies
Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Dependency Graph

E

E

E

int_5

E_1

E_2

E_3

E_4

E_5

int_2

int_3

int_5

E

5

+ 10

5

E

(5)

E

5

2

E

2

+ 3

3

int

int

int

int

int

int

int

int

int
Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called **S-attributed** grammars
 - Most common case
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 – Also used for type checking, code generation, computation, …

• Process is called syntax-directed translation
 – Substantial generalization over CFGs
Constructing an AST

• We first define the AST data type
 – Supplied by us for the project

• Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{array}{c}
n \\
\end{array}
\]

\[
\text{mkplus}(T_1, T_2) = \begin{array}{c}
\text{PLUS} \\
\end{array}
\]

\[
\begin{array}{c}
T_1 \\
\end{array} \quad \begin{array}{c}
T_2 \\
\end{array}
\]
Constructing an AST

• We define a synthesized attribute ast
 – Values of ast values are ASTs
 – We assume that int.lexval is the value of the integer lexeme
 – Computed using semantic actions

$E \rightarrow \text{int}$ \quad E.\text{ast} = \text{mkleaf(}\text{int.lexval})$

$\mid E_1 + E_2$ \quad E.\text{ast} = \text{mkplus(}E_1.\text{ast}, \, E_2.\text{ast})$

$\mid (\, E_1 \,)$ \quad E.\text{ast} = E_1.\text{ast}$
Abstract Syntax Tree Example

- Consider the string `int_5 ' + ' (' int_2 ' + ' int_3 ')'`
- A bottom-up evaluation of the `ast` attribute:

 \[
 E.ast = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]
Summary

• We can specify language syntax using CFG

• A parser will answer whether $s \in L(G)$
 – … and will trace a parse tree
 – … in whose productions we build an AST
 – … that we pass on to the rest of the compiler
Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right

- Terminals are seen in order of appearance in the token stream:

```
t_2  t_5  t_6  t_8  t_9
```
Recursive Descent Parsing

• Consider the grammar

 \[E \rightarrow T \mid T + E \]

 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

• Token stream is: \((\text{int}_5)\)

• Start with top-level non-terminal \(E\)

 – Try the rules for \(E\) in order
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\[(\text{int}_5)\]
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E
\]

\[
T \rightarrow \text{int} \mid \text{int} \times T \mid (E)
\]

Mismatch: int is not (
Backtrack …

(int₅)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\[
E \\
| \\
T
\]

(\text{int}_5)

↑
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]

\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (\ E\) \]

Mismatch: int is not (!
Backtrack …
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} * T \mid (E) \]

\((\text{int}_5) \uparrow \)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int } \ast T \mid (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

E
 /\ /
T E
 /\ /
 T
 /\ /
 int

(int\(_5\))

\text{Match! Advance input.}
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} * T | (E) \]

(int₅)

[Diagram of syntax tree]

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} * T | (E) \]

End of input, accept.

(int\(_5\))
A Recursive Descent Parser: Preliminaries

- Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

- Let the global next point to the next token
A (Limited) Recursive Descent Parser (2)

• Define boolean functions that check the token string for a match of
 – A given token terminal
    ```cpp
    bool term(TOKEN tok) { return *next++ == tok; }
    ```
 – The nth production of S:
    ```cpp
    bool S_n() { … }
    ```
 – Try all productions of S:
    ```cpp
    bool S() { … }
    ```
A (Limited) Recursive Descent Parser (3)

• For production \(E \rightarrow T \)

 `bool E_1() { return T(); }`

• For production \(E \rightarrow T + E \)

 `bool E_2() { return T() && term(PLUS) && E(); }`

• For all productions of \(E \) (with backtracking)

 `bool E() {
 TOKEN *save = next;
 return (next = save, E_1())
 || (next = save, E_2());
 }`
A (Limited) Recursive Descent Parser (4)

• Functions for non-terminal T

 bool $T_1()$ { return term(INT); }
 bool $T_2()$ { return term(INT) && term(TIMES) && $T()$; }
 bool $T_3()$ { return term(OPEN) && E() && term(CLOSE); }

 bool $T()$ {
 TOKEN *save = next;
 return (next = save, $T_1()$
 || (next = save, $T_2()$
 || (next = save, $T_3()$); }

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize `next` to point to first token
 - Invoke `E()`

- Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal
Example

\[
E \rightarrow T \lor T + E \\
T \rightarrow \text{int} \lor \text{int} \ast T \lor (E)
\]

bool term(TOKEN tok) { return *next++ == tok; }

bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }

bool E() {TOKEN *save = next; return (next = save, E_1()) || (next = save, E_2()); }

bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next; return (next = save, T_1()) || (next = save, T_2()) || (next = save, T_3()); }
When Recursive Descent Does Not Work

• Consider a production \(S \rightarrow S \ a \)

 \[
 \begin{align*}
 &\text{bool } S_1() \{ \text{return } S() && \text{term}(a); \} \\
 &\text{bool } S() \{ \text{return } S_1(); \}
 \end{align*}
 \]

• \(S() \) goes into an infinite loop

• A left-recursive grammar has a non-terminal \(S \)

 \[
 S \rightarrow^+ S\alpha \text{ for some } \alpha
 \]

• Recursive descent does not work in such cases
Elimination of Left Recursion

• Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]

• \(S \) generates all strings starting with a \(\beta \) and followed by a number of \(\alpha \)

• Can rewrite using right-recursion
 \[S \rightarrow \beta S' \]
 \[S' \rightarrow \alpha S' \mid \varepsilon \]
More Elimination of Left-Recursion

• In general

\[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

\[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]
\[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \varepsilon \]
General Left Recursion

• The grammar

 \[S \rightarrow A \alpha | \delta \]

 \[A \rightarrow S \beta \]

 is also left-recursive because

 \[S \rightarrow^{+} S \beta \alpha \]

• This left-recursion can also be eliminated

• See Dragon Book for general algorithm
 – Section 4.3
Summary of Recursive Descent

• Simple and general parsing strategy
 – Left-recursion must be eliminated first
 – … but that can be done automatically

• Historically unpopular because of backtracking
 – Was thought to be too inefficient
 – In practice, with some tweaks, fast and simple on modern machines

• Backtracking can be controlled by restricting the grammar