Error Handling
Syntax-Directed Translation
Recursive Descent Parsing

Lecture 6

Announcements

- PA1 & WA1
 - Due today at midnight

- PA2 & WA2
 - Assigned today

Outline

- Extensions of CFG for parsing
 - Precedence declarations
 - Error handling
 - Semantic actions

- Constructing a parse tree

- Recursive descent

Error Handling

- Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones

- Many kinds of possible errors (e.g. in C)

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example</th>
<th>Detected by ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>... $...</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>... x *% ...</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>... int x; y = x(3); ...</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>

Syntax Error Handling

- Error handler should
 - Report errors accurately and clearly
 - Recover from an error quickly
 - Not slow down compilation of valid code

- Good error handling is not easy to achieve

Approaches to Syntax Error Recovery

- From simple to complex
 - Panic mode
 - Error productions
 - Automatic local or global correction

- Not all are supported by all parser generators
Error Recovery: Panic Mode

- Simplest, most popular method
- When an error is detected:
 - Discard tokens until one with a clear role is found
 - Continue from there
- Such tokens are called **synchronizing tokens**
 - Typically the statement or expression terminators

Syntax Error Recovery: Panic Mode (Cont.)

- Consider the erroneous expression
 \[(1 + 2) + 3\]
- Panic-mode recovery:
 - Skip ahead to next integer and then continue
- Bison: use the special terminal `error` to describe how much input to skip
 \[E \rightarrow \text{int} | E + E | (E) | \text{error} \text{ int} | (\text{error})\]

Syntax Error Recovery: Error Productions

- Idea: specify in the grammar known common mistakes
- Essentially promotes common errors to alternative syntax
- Example:
 - Write `5 x` instead of `5 * x`
 - Add the production `E \rightarrow . . | E E`
- Disadvantage
 - Complicates the grammar

Error Recovery: Local and Global Correction

- Idea: find a correct “nearby” program
 - Try token insertions and deletions
 - Exhaustive search
- Disadvantages:
 - Hard to implement
 - Slows down parsing of correct programs
 - “Nearby” is not necessarily “the intended” program
 - Not all tools support it

Syntax Error Recovery: Past and Present

- **Past**
 - Slow recompilation cycle (even once a day)
 - Find as many errors in one cycle as possible
 - Researchers could not let go of the topic
- **Present**
 - Quick recompilation cycle
 - Users tend to correct one error/cycle
 - Complex error recovery is less compelling
 - Panic-mode seems enough

Abstract Syntax Trees

- So far a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Tree (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]
- And the string
 \[5 \times (2 + 3) \]
- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ (\ ' \text{int}_2 \ ' + ' \ \text{int}_3 \ ') \]
- During parsing we build a parse tree ...

Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - more compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we’ll use to construct ASTs
- Each grammar symbol may have attributes
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \[X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \]
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]
- For each symbol \(X \) define an attribute \(X\.val \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value (and is computed from values of subexpressions)
- We annotate the grammar with actions:
 \[
 \begin{align*}
 E &\rightarrow \text{int} \mid E + E \\
 &\mid (E) \\
 \end{align*}
 \]
 \[
 \begin{align*}
 (E) &\rightarrow (\text{val}) \\
 (E + E) &\rightarrow (\text{val} + \text{val}) \\
 \end{align*}
 \]
- String: \(5 + (2 + 3) \)
- Tokens: \(\text{int}_5 \ ' + ' \ (\ ' \text{int}_2 \ ' + ' \ \text{int}_3 \ ') \)

Semantic Actions: An Example (Cont.)

- String: \(5 + (2 + 3) \)
- Tokens: \(\text{int}_5 \ ' + ' \ (\ ' \text{int}_2 \ ' + ' \ \text{int}_3 \ ') \)

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>(E.val = E_1.val + E_2.val)</td>
</tr>
<tr>
<td>(E_1 \rightarrow \text{int}_3)</td>
<td>(E_3.val = \text{int}_3.val = 5)</td>
</tr>
<tr>
<td>(E_2 \rightarrow (E_3))</td>
<td>(E_3.val = \text{int}_3.val)</td>
</tr>
<tr>
<td>(E_3 \rightarrow E_4 + E_5)</td>
<td>(E_3.val = E_4.val + E_5.val)</td>
</tr>
<tr>
<td>(E_4 \rightarrow \text{int}_2)</td>
<td>(E_4.val = \text{int}_2.val = 2)</td>
</tr>
<tr>
<td>(E_5 \rightarrow \text{int}_3)</td>
<td>(E_5.val = \text{int}_3.val = 3)</td>
</tr>
</tbody>
</table>
Semantic Actions: Notes

- Semantic actions specify a system of equations

- Declarative Style
 - Order of resolution is not specified
 - The parser figures it out

- Imperative Style
 - The order of evaluation is fixed
 - Important if the actions manipulate global state

Semantic Actions: Notes

- We’ll explore actions as pure equations
 - Style 1
 - But note bison has a fixed order of evaluation for actions

- Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)

Dependency Graph

- Each node labeled \(E \) has one slot for the \(\text{val} \) attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal

Semantic Actions: Notes (Cont.)

- Synthesized attributes
 - Calculated from attributes of descendents in the parse tree
 - \(\text{E.val} \) is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called \(S \)-attributed grammars
 - Most common case
Inherited Attributes

- Another kind of attribute
- Calculated from attributes of parent and/or siblings in the parse tree
- Example: a line calculator

A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In second form the value of previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]

Attributes for the Line Calculator

- Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
- Each \(L \) has an attribute \(\text{val} \)
 \[L \rightarrow E = \quad \{ \text{L.val} = \text{E.val} \} \]
 \[L \rightarrow + E = \quad \{ \text{L.val} = \text{E.val} + \text{L.prev} \} \]
- We need the value of the previous line
- We use an inherited attribute \(\text{L.prev} \)

Attributes for the Line Calculator (Cont.)

- Each \(P \) has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[P \rightarrow \varepsilon \quad \{ \text{P.val} = 0 \} \]
 \[P \rightarrow L \quad \{ \text{P.val} = \text{L.val}; \text{L.prev} = \text{P.prev} \} \]
 - Each \(L \) has an inherited attribute \(\text{prev} \)
 \[\text{L.prev} \text{ is inherited from sibling } \text{P.prev} \]
 - Example ...

Example of Inherited Attributes

- \(\text{val} \) synthesized
- \(\text{prev} \) inherited
 - All can be computed in depth-first order
Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
 - And many other things as well
 - Also used for type checking, code generation, ...
 - Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing An AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:
 - \(\text{mkleaf}(n) \)
 - \(\text{mkplus}(\ldots) \)

Constructing a Parse Tree

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int.lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

 \[
 \begin{align*}
 E &\rightarrow \text{int} & E.\text{ast} &= \text{mkleaf}(\text{int.lexval}) \\
 | \ E_1 + E_2 & E.\text{ast} &= \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \\
 | \ (E) & E.\text{ast} &= E.\text{ast}
 \end{align*}
 \]

Parse Tree Example

- Consider the string \(\text{int}_5 \ ' + ' \ (\text{int}_2 \ ' + ' \text{int}_3) \)
- A bottom-up evaluation of the \(\text{ast} \) attribute:
 \[
 E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \\
 \quad \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]

Summary

- We can specify language syntax using CFG
- A parser will answer whether \(s \in L(G) \)
 - ... and will build a parse tree
 - ... which we convert to an AST
 - ... and pass on to the rest of the compiler

Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right
- Terminals are seen in order of appearance in the token stream:
 \[
 t_2 \ t_5 \ t_6 \ t_8 \ t_9
 \]
Recursive Descent Parsing

Consider the grammar
\[
E \rightarrow T | T + E \\
T \rightarrow \text{int} | \text{int} \times T | (E)
\]

Token stream is: \((\text{int}_5)\)

Start with top-level non-terminal \(E\)
- Try the rules for \(E\) in order

Mismatch: \(\text{int}\) is not (!
Backtrack …
Recursive Descent Parsing

\[E \rightarrow T \mid T \ast E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\[\text{Match! Advance input.} \]

\[\text{int} \]

\[\text{match} \]

Prof. Aiken, CS 143, Lecture 6

42

44

46

48
Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

(int)

End of input, accept.

A (Limited) Recursive Descent Parser (2)

• Define boolean functions that check the token string for a match of
 - A given token terminal
 bool term(TOKEN tok) { return *next++ == tok; }
 - The nth production of S:
 bool S_n() { ... }
 - Try all productions of S:
 bool S() { ... }

A (Limited) Recursive Descent Parser (3)

• For production E → T
 bool E_1() { return T(); }
• For production E → T + E
 bool E_2() { return T() && term(PLUS) && E(); }
• For all productions of E (with backtracking)
 bool E() {
 TOKEN *save = next;
 return (next = save, E_1())
 || (next = save, E_2());
 }

A (Limited) Recursive Descent Parser (4)

• Functions for non-terminal T
 bool T_1() { return term(INT); }
 bool T_2() { return term(INT) && term(TIMES) && T_1(); }
 bool T_3() { return term(OPEN) && E() && term(CLOSE); }
 bool T() {
 TOKEN *save = next;
 return (next = save, T_1())
 || (next = save, T_2())
 || (next = save, T_3()); }

Recursive Descent Parsing, Notes.

• To start the parser
 - Initialize next to point to first token
 - Invoke E()
• Notice how this simulates the example parse
• Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal
Example

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

```c
bool term(TOKEN tok) { return *next++ == tok; }

bool E() { return T(); }

bool E() { return T() && term(PLUS) && E(); }

bool E() { return (next = save, E()); || (next = save, E()); || (next = save, E()); };
```

When Recursive Descent Does Not Work

- Consider a production \(S \rightarrow S a \)
  ```c
  bool S1() { return S() && term(a); }
  bool S() { return S1(); }
  ```

- \(S() \) goes into an infinite loop

- A left-recursive grammar has a non-terminal \(S \rightarrow S \alpha \) for some \(\alpha \)

- Recursive descent does not work in such cases

Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]

- \(S \) generates all strings starting with a \(\beta \) and followed by a number of \(\alpha \)

- Can rewrite using right-recursion
 \[S \rightarrow \beta \ S' \]
 \[S' \rightarrow \alpha \ S' \mid \epsilon \]

More Elimination of Left-Recursion

- In general
 \[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

- All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

- Rewrite as
 \[S \rightarrow \beta_1 \ S' \mid \ldots \mid \beta_m \ S' \]
 \[S' \rightarrow \alpha_1 \ S' \mid \ldots \mid \alpha_n \ S' \mid \epsilon \]

General Left Recursion

- The grammar
 \[S \rightarrow A \alpha \mid \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow S \beta \alpha \]

- This left-recursion can also be eliminated

- See Dragon Book for general algorithm
 - Section 4.3

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

- Unpopular because of backtracking
 - Thought to be too inefficient

- In practice, backtracking is eliminated by restricting the grammar