Error Handling
Syntax-Directed Translation
Recursive Descent Parsing

Lecture 6

Announcements

• PA1 & WA1
 - Due today at midnight

• PA2 & WA2
 - Assigned today

Outline

• Extensions of CFG for parsing
 - Precedence declarations
 - Error handling
 - Semantic actions

• Constructing a parse tree

• Recursive descent

Error Handling

• Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones

• Many kinds of possible errors (e.g. in C)

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example</th>
<th>Detected by ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>... $...</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>... x *% ...</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>... int x; y = x(3); ...</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>

Syntax Error Handling

• Error handler should
 - Report errors accurately and clearly
 - Recover from an error quickly
 - Not slow down compilation of valid code

• Good error handling is not easy to achieve

Approaches to Syntax Error Recovery

• From simple to complex
 - Panic mode
 - Error productions
 - Automatic local or global correction

• Not all are supported by all parser generators
Error Recovery: Panic Mode

- Simplest, most popular method
- When an error is detected:
 - Discard tokens until one with a clear role is found
 - Continue from there
- Such tokens are called *synchronizing* tokens
 - Typically the statement or expression terminators

Syntax Error Recovery: Panic Mode (Cont.)

- Consider the erroneous expression
 \[(1 + 2) + 3\]
- Panic-mode recovery:
 - Skip ahead to next integer and then continue
- Bison: use the special terminal `error` to describe how much input to skip
 \[E \rightarrow \text{int} | E + E | (E) | \text{error} \text{ int} | (\text{error})\]

Syntax Error Recovery: Error Productions

- Idea: specify in the grammar known common mistakes
- Essentially promotes common errors to alternative syntax
- Example:
 - Write \(5 \times x\) instead of \(5 \ast x\)
 - Add the production \(E \rightarrow \ldots | E E\)
- Disadvantage
 - Complicates the grammar

Error Recovery: Local and Global Correction

- Idea: find a correct “nearby” program
 - Try token insertions and deletions
 - Exhaustive search
- Disadvantages:
 - Hard to implement
 - Slows down parsing of correct programs
 - “Nearby” is not necessarily “the intended” program
 - Not all tools support it

Syntax Error Recovery: Past and Present

- Past
 - Slow recompilation cycle (even once a day)
 - Find as many errors in one cycle as possible
 - Researchers could not let go of the topic
- Present
 - Quick recompilation cycle
 - Users tend to correct one error/cycle
 - Complex error recovery is less compelling
 - Panic-mode seems enough

Abstract Syntax Trees

- So far a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Tree. (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]

- And the string
 \[5 + (2 + 3) \]

- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ (\text{int}_2 \ ' + ' \ \text{int}_3 \ ') \]

- During parsing we build a parse tree ...

Example of Parse Tree

Traces the operation of the parser

Does capture the nesting structure

But too much info
- Parentheses
- Single-successor nodes

Example of Abstract Syntax Tree

Also captures the nesting structure

But abstracts from the concrete syntax
 => more compact and easier to use

An important data structure in a compiler

Semantic Actions

- This is what we’ll use to construct ASTs

- Each grammar symbol may have attributes
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

 - Each production may have an action
 - Written as: \[X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \]
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar
 \[E \rightarrow \text{int} \mid E \cdot E \mid (E) \]

 - For each symbol \(X \) define an attribute \(X\text{.val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value (and is computed from values of subexpressions)

 - We annotate the grammar with actions:
 \[
 \begin{align*}
 E & \rightarrow \text{int} \quad (E\text{.val} = \text{int}\text{.val}) \\
 & \mid E \cdot E \quad (E\text{.val} = E_1\text{.val} + E_2\text{.val}) \\
 & \mid (E) \quad (E\text{.val} = E\text{.val})
 \end{align*}
 \]

Production: \(E \rightarrow E_1 \cdot E_2 \)
Equation: \(E_{\text{val}} = E_1\text{.val} + E_2\text{.val} \)

Production: \(E_1 \rightarrow \text{int}_3 \)
Equation: \(E_1\text{.val} = \text{int}_3\text{.val} = 5 \)

Production: \(E_2 \rightarrow (E_3) \)
Equation: \(E_2\text{.val} = E_3\text{.val} \)

Production: \(E_3 \rightarrow E_4 \cdot E_5 \)
Equation: \(E_3\text{.val} = E_4\text{.val} + E_5\text{.val} \)

Production: \(E_4 \rightarrow \text{int}_2 \)
Equation: \(E_4\text{.val} = \text{int}_2\text{.val} = 2 \)

Production: \(E_5 \rightarrow \text{int}_3 \)
Equation: \(E_5\text{.val} = \text{int}_3\text{.val} = 3 \)
Semantic Actions: Notes

- Semantic actions specify a system of equations
 - Order of resolution is not specified

- Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)

- The parser must find the order of evaluation

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal

Semantic Actions: Notes (Cont.)

- Synthesized attributes
 - Calculated from attributes of descendents in the parse tree
 - \(E.val \) is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called S-attributed grammars
 - Most common case

Dependency Graph

Each node labeled \(E \) has one slot for the \(val \) attribute

Note the dependencies

Inherited Attributes

- Another kind of attribute

- Calculated from attributes of parent and/or siblings in the parse tree

- Example: a line calculator
A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int } \mid E + E \]
- Each line is terminated with the equals sign
 \[L \rightarrow E = \mid + E = \]
- In second form the value of previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \epsilon \mid P L \]

Attributes for the Line Calculator

- Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
- Each \(L \) has an attribute \(\text{val} \)
 \[L \rightarrow E = \quad \{ L.\text{val} = E.\text{val} \} \]
 \[L \rightarrow + E = \quad \{ L.\text{val} = E.\text{val} + L.\text{prev} \} \]
- We need the value of the previous line
- We use an inherited attribute \(L.\text{prev} \)

Attributes for the Line Calculator (Cont.)

- Each \(P \) has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[P \rightarrow \epsilon \quad \{ P.\text{val} = 0 \} \]
 \[L \rightarrow P, L \quad \{ P.\text{val} = L.\text{val}; \quad L.\text{prev} = P_1.\text{val} \} \]
 - Each \(L \) has an inherited attribute \(\text{prev} \)
 - \(L.\text{prev} \) is inherited from sibling \(P_1.\text{val} \)
- Example ...

Example of Inherited Attributes

- \(\text{val} \) synthesized
- \(\text{prev} \) inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called syntax-directed translation
 - Substantial generalization over CFGs
Constructing An AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:
 - `mkleaf(n)`
 - `mkplus(T_1, T_2)`

Constructing a Parse Tree

- We define a synthesized attribute `ast`
 - Values of `ast` values are ASTs
 - We assume that `int.lexval` is the value of the integer lexeme
 - Computed using semantic actions

Parse Tree Example

- Consider the string `int 5' + '(' int 2 ' + ' int 3 ')'`
- A bottom-up evaluation of the `ast` attribute:
 - `E.ast = mkplus(mkleaf(5), mkplus(mkleaf(2), mkleaf(3)))`

Summary

- We can specify language syntax using CFG
- A parser will answer whether `s ∈ L(G)`
 - ... and will build a parse tree
 - ... which we convert to an AST
 - ... and pass on to the rest of the compiler

Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right
- Terminals are seen in order of appearance in the token stream:
 - `t_2 t_5 t_6 t_8 t_9`

Recursive Descent Parsing

- Consider the grammar
 - `E → T | T + E`
 - `T → int | int * T | (E)`
- Token stream is: `(int 5)`
- Start with top-level non-terminal `E`
 - Try the rules for `E` in order
Recursive Descent Parsing

$E \rightarrow T \mid T + E$
$T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)$

```
E
T
int
Mismatch: int is not (!
Backtrack ...
```

(int_5)

```
E
T
int
Mismatch: int is not (!
Backtrack ...
```

(int_5)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\begin{itemize}
 \item \((\text{int}_5) \)
 \item \(\text{Match! Advance input.} \)
\end{itemize}

End of input, accept.
A Recursive Descent Parser, Preliminaries

- Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES
- Let the global `next` point to the next token

A (Limited) Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal
    ```cpp
    bool term(TOKEN tok) { return *next++ == tok; }
    ```
 - The nth production of S:
    ```cpp
    bool Sn() { ... }
    ```
 - Try all productions of S:
    ```cpp
    bool S() { ... }
    ```

A (Limited) Recursive Descent Parser (3)

- For production \(E \rightarrow T \)
  ```cpp
  bool E1() { return T(); }
  ```
- For production \(E \rightarrow T + E \)
  ```cpp
  bool E2() { return T() && term(PLUS) && E(); }
  ```
- For all productions of E (with backtracking)
  ```cpp
  bool E() {
    TOKEN *save = next;
    return (next = save, E1()) || (next = save, E2());
  }
  ```

A (Limited) Recursive Descent Parser (4)

- Functions for non-terminal T
  ```cpp
  bool T1() { return term(INT); }
  ```
  ```cpp
  bool T2() { return term(INT) && term(TIMES) && T(); }
  ```
  ```cpp
  bool T3() { return term(OPEN) && E() && term(CLOSE); }
  ```
- For all productions of T (with backtracking)
  ```cpp
  bool T() {
    TOKEN *save = next;
    return (next = save, T1()) || (next = save, T2()) || (next = save, T3());
  }
  ```

Recursive Descent Parsing, Notes.

- To start the parser
 - Initialize `next` to point to first token
 - Invoke `E`
- Notice how this simulates the example parse
- Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal

Example

```
E → T | T + E   ( int )
T → int | int ^ T | ( E )

bool term(TOKEN tok) { return *next++ == tok; }
bool E() { return term(INT); }
bool T() { return term(INT) && term(TIMES) && T(); }
bool T() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
          return (next = save, T1())
               || (next = save, T2())
               || (next = save, T3());
  ```
When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S a$

  ```
  bool S() { return S() && term(a); }
  bool S() { return S(); }
  ```

- $S()$ goes into an infinite loop

- A left-recursive grammar has a non-terminal S

 $S \rightarrow S \alpha$ for some α

- Recursive descent does not work in such cases

Elimination of Left Recursion

- Consider the left-recursive grammar

 $S \rightarrow S \alpha | \beta$

- S generates all strings starting with a β and followed by a number of α

- Can rewrite using right-recursion

 $S \rightarrow \beta S'$
 $S' \rightarrow \alpha S' | \varepsilon$

More Elimination of Left-Recursion

- In general

 $S \rightarrow S \alpha_1 | \ldots | S \alpha_n | \beta_1 | \ldots | \beta_m$

- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$

- Rewrite as

 $S \rightarrow \beta_1 S' | \ldots | \beta_m S'$
 $S' \rightarrow \alpha_1 S' | \ldots | \alpha_n S' | \varepsilon$

General Left Recursion

- The grammar

 $S \rightarrow A \alpha | \beta$

 $A \rightarrow S \beta$

 is also left-recursive because

 $S \rightarrow S \beta \alpha$

- This left-recursion can also be eliminated

- See Dragon Book for general algorithm
 - Section 4.3

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

- Unpopular because of backtracking
 - Thought to be too inefficient

- In practice, backtracking is eliminated by restricting the grammar