Overview of Semantic Analysis

Lecture 9

Midterm Thursday

- Material through lecture 8
- Open note
 - Laptops OK, but no internet or computation

Outline

- The role of semantic analysis in a compiler
 - A laundry list of tasks
- Scope
 - Implementation: symbol tables
- Types

The Compiler So Far

- Lexical analysis
 - Detects inputs with illegal tokens
- Parsing
 - Detects inputs with ill-formed parse trees
- Semantic analysis
 - Last “front end” phase
 - Catches all remaining errors

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs not context-free

What Does Semantic Analysis Do?

- Checks of many kinds . . . coolc checks:
 1. All identifiers are declared
 2. Types
 3. Inheritance relationships
 4. Classes defined only once
 5. Methods in a class defined only once
 6. Reserved identifiers are not misused
 And others . . .
- The requirements depend on the language
Scope

• Matching identifier declarations with uses
 - Important static analysis step in most languages
 - Including COOL!

What’s Wrong?

• Example 1
 \(\text{Let } y: \text{String } \leftarrow \text{"abc" in } y + 3 \)

• Example 2
 \(\text{Let } y: \text{Int in } x + 3 \)

Note: An example property that is not context free.

Scope (Cont.)

• The scope of an identifier is the portion of a program in which that identifier is accessible

• The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don’t overlap

• An identifier may have restricted scope

Static vs. Dynamic Scope

• Most languages have static scope
 - Scope depends only on the program text, not runtime behavior
 - Cool has static scope

• A few languages are dynamically scoped
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

\begin{verbatim}
let x: Int <- 0 in
{ x;
 let x: Int <- 1 in

 x;
}
\end{verbatim}

Static Scoping Example (Cont.)

\begin{verbatim}
let x: Int <- 0 in
{
 x;
 let x: Int <- 1 in

 x;
}
\end{verbatim}

Uses of \(x \) refer to closest enclosing definition
Dynamic Scope

• A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program

• Example
 \[g(y) = \text{let } a ← 4 \text{ in } f(3); \]
 \[f(x) = a \]

• More about dynamic scope later in the course

Scope in Cool

• Cool identifier bindings are introduced by
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object ids)
 - Formal parameters (introduce object ids)
 - Attribute definitions (introduce object ids)
 - Case expressions (introduce object ids)

Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-closely nested rule

• For example, class definitions in Cool
 - Cannot be nested
 - Are globally visible throughout the program

• In other words, a class name can be used before it is defined

Example: Use Before Definition

Class Foo {
 . . . let y: Bar in . . .
};

Class Bar {
 . . .
};

More Scope in Cool

Attribute names are global within the class in which they are defined

Class Foo {
 f(): Int { a }
 a: Int ← 0;
}

More Scope (Cont.)

• Method/attribute names have complex rules

• A method need not be defined in the class in which it is used, but in some parent class

• Methods may also be redefined (overridden)
Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Before: Process an AST node \(n \)
 - Recurse: Process the children of \(n \)
 - After: Finish processing the AST node \(n \)

- When performing semantic analysis on a portion of the AST, we need to know which identifiers are defined

Implementing . . . (Cont.)

- Example: the scope of `let` bindings is one subtree of the AST:

  ```
  let x: Int ← 0 in e
  ```

 - \(x \) is defined in subtree \(e \)

Symbol Tables

- Consider again: `let x: Int ← 0 in e`
- Idea:
 - Before processing \(e \), add definition of \(x \) to current definitions, overriding any other definition of \(x \)
 - Recurse
 - After processing \(e \), remove definition of \(x \) and restore old definition of \(x \)

- A symbol table is a data structure that tracks the current bindings of identifiers

A Simple Symbol Table Implementation

- Structure is a stack
- Operations
 - `add_symbol(x)` push \(x \) and associated info, such as \(x \)'s type, on the stack
 - `find_symbol(x)` search stack, starting from top, for \(x \). Return first \(x \) found or NULL if none found
 - `remove_symbol()` pop the stack
- Why does this work?

Limitations

- The simple symbol table works for `let`
 - Symbols added one at a time
 - Declarations are perfectly nested
- What doesn’t it work for?

A Fancier Symbol Table

- `enter_scope()` start a new nested scope
- `find_symbol(x)` finds current \(x \) (or null)
- `add_symbol(x)` add a symbol \(x \) to the table
- `check_scope(x)` true if \(x \) defined in current scope
- `exit_scope()` exit current scope

We will supply a symbol table manager for your project
Class Definitions

- Class names can be used before being defined
- We can't check class names
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

```
add $r1, $r2, $r3
```

What are the types of $r1, $r2, $r3?

Types and Operations

- Certain operations are legal for values of each type
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!

Type Checking Overview

- Three kinds of languages:
 - *Statically typed*: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - *Dynamically typed*: Almost all checking of types is done as part of program execution (Scheme)
 - *Untyped*: No type checking (machine code)
The Type Wars

- Competing views on static vs. dynamic typing

- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks

- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping difficult within a static type system

The Type Wars (Cont.)

- In practice
 - Code written in statically typed languages usually has an escape mechanism
 - Unsafe casts in C, Java
 - Some dynamically typed languages support "pragmas" or "advice"
 - i.e., type declarations

- Why don’t we have static typing everyone likes?

Types Outline

- Type concepts in COOL
- Notation for type rules
 - Logical rules of inference
- COOL type rules
- General properties of type systems

Cool Types

- The types are:
 - Class Names
 - SELF_TYPE
- The user declares types for identifiers
- The compiler infers types for expressions
 - Infers a type for every expression

Type Checking and Type Inference

- Type Checking is the process of verifying fully typed programs
- Type Inference is the process of filling in missing type information
- The two are different, but the terms are often used interchangeably

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars
- The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?

- Inference rules have the form
 If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning
 If E_1 and E_2 have certain types, then E_3 has a certain type
- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read with practice
- Start with a simplified system and gradually add features
- Building blocks
 - Symbol \wedge is "and"
 - Symbol \Rightarrow is "if-then"
 - $x:T$ is "x has type T"

From English to an Inference Rule (2)

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

e_1 has type Int \wedge e_2 has type Int \Rightarrow $e_1 + e_2$ has type Int

From English to an Inference Rule (3)

The statement

e_1: Int \wedge e_2: Int \Rightarrow $e_1 + e_2$: Int

is a special case of

Hypothesis_1 \wedge ... \wedge Hypothesis_n \Rightarrow Conclusion

This is an inference rule.

Notation for Inference Rules

- By tradition inference rules are written
 \vdash Hypothesis_1 \wedge ... \wedge Hypothesis_n \vdash Conclusion
- Cool type rules have hypotheses and conclusions
 $\vdash e:T$
- \vdash means “it is provable that . . .”

Two Rules

- i is an integer literal
 $\vdash i$: Int
 $[\text{Int}]$

- e_1: Int $\vdash e_2$: Int
 $\vdash e_1 + e_2$: Int
 $[\text{Add}]$
Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions

Example: $1 + 2$

<table>
<thead>
<tr>
<th>1 is an int literal</th>
<th>2 is an int literal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash 1 : \text{Int}$</td>
<td>$\vdash 2 : \text{Int}$</td>
</tr>
<tr>
<td>$\vdash 1 + 2 : \text{Int}$</td>
<td></td>
</tr>
</tbody>
</table>

Soundness

- A type system is **sound** if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others:
 - i is an integer literal
 - $\vdash i : \text{Object}$

Type Checking Proofs

- Type checking proves facts $e : T$
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST

Rules for Constants

- $\vdash \text{false} : \text{Bool}$ [False]
- s is a string literal
 - $\vdash s : \text{String}$ [String]

Rule for New

- new T produces an object of type T
 - Ignore SELF_TYPE for now . . .
 - $\vdash \text{new T} : T$ [New]
Two More Rules

\[\begin{align*}
\vdash e \colon \text{Bool} \\
\vdash \neg e \colon \text{Bool} \\
\vdash e_1 \colon \text{Bool} \\
\vdash e_2 \colon T \\
\vdash \text{while } e_1 \text{ loop } e_2 \text{ pool: } \text{Object} \\
\end{align*} \]

A Problem

• What is the type of a variable reference?

\[\begin{align*}
\text{x is a variable} \\
\vdash x \colon ? \\
\end{align*} \]

• The local, structural rule does not carry enough information to give \(x \) a type.

A Solution

• Put more information in the rules!

• A type environment gives types for free variables
 - A type environment is a function from \text{ObjectIdentifiers} to \text{Types}
 - A variable is free in an expression if it is not defined within the expression

Type Environments

Let \(O \) be a function from \text{ObjectIdentifiers} to \text{Types}

The sentence \(O \vdash e \colon T \)

is read: Under the assumption that variables have the types given by \(O \), it is provable that the expression \(e \) has the type \(T \)

Modified Rules

The type environment is added to the earlier rules:

\[\begin{align*}
\text{i is an integer literal} \\
\vdash i \colon \text{Int} \\
\end{align*} \]

\[\begin{align*}
O \vdash e_1 \colon \text{Int} \\
O \vdash e_2 \colon \text{Int} \\
O \vdash e_1 + e_2 \colon \text{Int} \\
\end{align*} \]

New Rules

And we can write new rules:

\[\begin{align*}
O(x) = T \\
\vdash x \colon T \\
\end{align*} \]
Let

\[
\frac{O(T_0/x) \vdash e_1 : T_1}{O \vdash \text{let } x : T_0 \text{ in } e_1 : T_1} \quad \text{[Let-No-Init]}
\]

\[
O[T/y] \text{ means } O \text{ modified to return } T \text{ on argument } y
\]

Note that the \textit{let}-rule enforces variable scope

Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Let with Initialization

Now consider \textit{let} with initialization:

\[
\frac{O \vdash e_0 : T_0}{O[T_0/x] \vdash e_1 : T_1} \quad \text{[Let-Init]}
\]

\[
\frac{O \vdash \text{let } x : T_0 \text{ in } e_1 : T_1}{O \vdash e_0 \in e_1 : T_1}
\]

This rule is weak. Why?

Subtyping

- Define a relation \(\leq\) on classes
 - \(X \leq X\)
 - \(X \leq Y\) if \(X\) inherits from \(Y\)
 - \(X \leq Z\) if \(X \leq Y\) and \(Y \leq Z\)

- An improvement

\[
\frac{O \vdash e_0 : T_0}{O[T/x] \vdash e_1 : T_1} \quad \text{[Let-Init]}
\]

\[
\frac{T_0 \leq T}{O \vdash \text{let } x : T \text{ in } e_1 : T_1}
\]

Assignment

- Both \textit{let} rules are sound, but more programs typecheck with the second one
- More uses of subtyping:

\[
\frac{O(x) = T_0}{O \vdash e_1 : T_1} \quad \text{[Assign]}
\]

\[
\frac{T_1 = T_0}{O \vdash x \leftarrow e_1 : T_1}
\]

Initialized Attributes

- Let \(O_c(x) = T\) for all attributes \(x : T\) in class \(C\)
- Attribute initialization is similar to \textit{let}, except for the scope of names

\[
\frac{O_c(x) = T_0}{O_c \vdash e_1 : T_1}
\]

\[
\frac{T_1 = T_0}{O_c \vdash x : T_0 \leftarrow e_1 : T_1} \quad \text{[Attr-Init]}\]
If-Then-Else

- Consider:
 - if e_0 then e_1 else e_2 fi
- The result can be either e_1 or e_2
- The type is either e_1’s type or e_2’s type
- The best we can do is the smallest supertype larger than the type of e_1 or e_2

Least Upper Bounds

- $\text{lub}(X,Y)$, the least upper bound of X and Y, is Z if
 - $X \leq Z \land Y \leq Z$
 - Z is an upper bound
 - $X \leq Z' \land Y \leq Z' \implies Z \leq Z'$
 - Z is least among upper bounds
- In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

\[
\begin{align*}
O &\vdash e_0 : \text{Bool} \\
O &\vdash e_1 : T_1 \quad \text{[If-Then-Else]} \\
O &\vdash e_2 : T_2 \\
O &\vdash \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi : lub}(T_1, T_2)
\end{align*}
\]

Case

- The rule for case expressions takes a lub over all branches

\[
\begin{align*}
O &\vdash e_0 : T_0 \\
O &\vdash e_1 : T_1 \\
\ldots \\
O &\vdash e_n : T_n \\
O &\vdash \text{case } e_0 \text{ of } x_1 : T_1 \rightarrow e_1 \ldots x_n : T_n \rightarrow e_n \text{ esac : lub}(T_1, \ldots, T_n)
\end{align*}
\]

Method Dispatch

- There is a problem with type checking method calls:

\[
\begin{align*}
O &\vdash e_0 : T_0 \\
O &\vdash e_1 : T_1 \\
\ldots \\
O &\vdash e_n : T_n \\
O &\vdash e_0.f(e_1, \ldots, e_n) : ?
\end{align*}
\]

Notes on Dispatch

- In COOL, method and object identifiers live in different name spaces
 - A method foo and an object foo can coexist in the same scope
- In the type rules, this is reflected by a separate mapping M for method signatures
 \[M(C,f) = (T_{i1}, \ldots, T_{in}, T_{n+1}) \]
 means in class C there is a method f $f(x_1 : T_{i1}, \ldots, x_n : T_n) : T_{n+1}$
The Dispatch Rule Revisited

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\vdots \]
\[O, M \vdash e_n : T_n \]
\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}) \]
\[T_i \leq T_i' \text{ for } 1 \leq i \leq n \]

[Dispatch]

\[O, M \vdash e_0 f(e_1, \ldots, e_n) : T_{n+1} \]

Static Dispatch

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type

Static Dispatch (Cont.)

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\vdots \]
\[O, M \vdash e_n : T_n \]
\[T_0 = T \] [StaticDispatch]
\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}) \]
\[T_i \leq T_i' \text{ for } 1 \leq i \leq n \]
\[O, M \vdash e_0 @ T.f(e_1, \ldots, e_n) : T_{n+1} \]

The Method Environment

- The method environment must be added to all rules
- In most cases, \(M \) is passed down but not actually used
 - Only the dispatch rules use \(M \)

\[O, M \vdash e_0 : \text{Int} \]
\[O, M \vdash e_1 : \text{Int} \]

\[O, M \vdash e_0 + e_1 : \text{Int} \] [Add]

More Environments

- For some cases involving \texttt{SELF_TYPE}, we need to know the class in which an expression appears
- The full type environment for COOL:
 - A mapping \(O \) giving types to object id’s
 - A mapping \(M \) giving types to methods
 - The current class \(C \)

Sentences

The form of a sentence in the logic is

\[O, M, C \vdash e : T \]

Example:

\[O, M, C \vdash e_0 : \text{Int} \]
\[O, M, C \vdash e_1 : \text{Int} \]

\[O, M, C \vdash e_0 + e_1 : \text{Int} \] [Add]
Type Systems

- The rules in this lecture are COOL-specific
 - More info on rules for self next time
 - Other languages have very different rules
- General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Warning: Type rules are very compact!

One-Pass Type Checking

- COOL type checking can be implemented in a single traversal over the AST
- Type environment is passed down the tree
 - From parent to child
- Types are passed up the tree
 - From child to parent

Implementing Type Systems

\[
\frac{O, M, C \vdash e_1 : \text{Int} \quad O, M, C \vdash e_2 : \text{Int}}{O, M, C \vdash e_1 + e_2 : \text{Int}} \quad \text{[Add]}
\]

\[
\text{TypeCheck}(\text{Environment}, e_1 + e_2) = \{
\begin{align*}
T_1 &= \text{TypeCheck}(\text{Environment}, e_1); \\
T_2 &= \text{TypeCheck}(\text{Environment}, e_2); \\
\text{Check } T_1 &= T_2 = \text{Int}; \\
\text{return } \text{Int};
\end{align*}
\}
\]