Overview of Semantic Analysis

Lecture 9

Midterm Thursday

• Material through lecture 8

• Open note
 - Laptops OK, but no internet or computation

Outline

• The role of semantic analysis in a compiler
 - A laundry list of tasks

• Scope
 - Implementation: symbol tables

• Types

The Compiler So Far

• Lexical analysis
 - Detects inputs with illegal tokens

• Parsing
 - Detects inputs with ill-formed parse trees

• Semantic analysis
 - Last “front end” phase
 - Catches all remaining errors

Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs not context-free

What Does Semantic Analysis Do?

• Checks of many kinds
 - coolc checks:
 1. All identifiers are declared
 2. Types
 3. Inheritance relationships
 4. Classes defined only once
 5. Methods in a class defined only once
 6. Reserved identifiers are not misused
 And others . . .

• The requirements depend on the language
Scope

- Matching identifier declarations with uses
 - Important static analysis step in most languages
 - Including COOL!

What’s Wrong?

- Example 1
 \[\text{Let } y: \text{String} \leftarrow \text{“abc” in } y + 3 \]

- Example 2
 \[\text{Let } y: \text{Int in } x + 3 \]

Note: An example property that is not context free.

Scope (Cont.)

- The scope of an identifier is the portion of a program in which that identifier is accessible

- The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don’t overlap

- An identifier may have restricted scope

Static vs. Dynamic Scope

- Most languages have static scope
 - Scope depends only on the program text, not run-time behavior
 - Cool has static scope

- A few languages are dynamically scoped
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

```
let x: Int <- 0 in
{ x;
  let x: Int <- 1 in
  x;
  x;
}
```

Static Scoping Example (Cont.)

```
let x: Int <- 0 in
{ x;
  let x: Int <- 1 in
  x;
  x;
}
```

Uses of \(x\) refer to closest enclosing definition
Dynamic Scope

- A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program.
- Example:

  ```
  g(y) = let a ← 4 in f(3);
  f(x) = a
  ```
- More about dynamic scope later in the course.

Scope in Cool

- Cool identifier bindings are introduced by:
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object ids)
 - Formal parameters (introduce object ids)
 - Attribute definitions (introduce object ids)
 - Case expressions (introduce object ids)

Scope in Cool (Cont.)

- Not all kinds of identifiers follow the most-closely nested rule.
- For example, class definitions in Cool:
 - Cannot be nested.
 - Are globally visible throughout the program.
- In other words, a class name can be used before it is defined.

Example: Use Before Definition

```
Class Foo {
  ... let y: Bar in ... }
}
Class Bar {
  ... }
```

More Scope (Cont.)

- Method/attribute names have complex rules.
- A method need not be defined in the class in which it is used, but in some parent class.
- Methods may also be redefined (overridden).

More Scope in Cool

- Attribute names are global within the class in which they are defined.

```
Class Foo {
  f(): Int { a; }
  a: Int ← 0;
}
```
Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Before: Process an AST node \(n \)
 - Recurse: Process the children of \(n \)
 - After: Finish processing the AST node \(n \)

- When performing semantic analysis on a portion of the AST, we need to know which identifiers are defined

Implementing... (Cont.)

- Example: the scope of \(\text{let} \) bindings is one subtree of the AST:

 \[
 \text{let } x: \text{Int} ← 0 \text{ in } e
 \]

 - \(x \) is defined in subtree \(e \)

Symbol Tables

- Consider again: \(\text{let } x: \text{Int} ← 0 \text{ in } e \)
- Idea:
 - Before processing \(e \), add definition of \(x \) to current definitions, overriding any other definition of \(x \)
 - Recurse
 - After processing \(e \), remove definition of \(x \) and restore old definition of \(x \)

- A symbol table is a data structure that tracks the current bindings of identifiers

A Simple Symbol Table Implementation

- Structure is a stack
- Operations
 - \(\text{add symbol}(x) \) push \(x \) and associated info, such as \(x \)'s type, on the stack
 - \(\text{find symbol}(x) \) search stack, starting from top, for \(x \). Return first \(x \) found or NULL if none found
 - \(\text{remove symbol}() \) pop the stack

- Why does this work?

Limitations

- The simple symbol table works for \(\text{let} \)
 - Symbols added one at a time
 - Declarations are perfectly nested

- What doesn’t it work for?

A Fancier Symbol Table

- \(\text{enter scope}() \) start a new nested scope
- \(\text{find symbol}(x) \) finds current \(x \) (or null)
- \(\text{add symbol}(x) \) add a symbol \(x \) to the table
- \(\text{check scope}(x) \) true if \(x \) defined in current scope
- \(\text{exit scope}() \) exit current scope

We will supply a symbol table manager for your project
Class Definitions

- Class names can be used before being defined
- We can’t check class names
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

```
add $r1, $r2, $r3
```

What are the types of $r1, $r2, $r3?

Types and Operations

- Certain operations are legal for values of each type
 - It doesn’t make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language’s type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will

Type Checking Overview

- Three kinds of languages:
 - Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - Dynamically typed: Almost all checking of types is done as part of program execution (Scheme)
 - Untyped: No type checking (machine code)
The Type Wars

- Competing views on static vs. dynamic typing

- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks

- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping difficult within a static type system

The Type Wars (Cont.)

- In practice
 - Code written in statically typed languages usually has an escape mechanism
 - Unsafe casts in C, Java
 - Some dynamically typed languages support "pragmas" or "advice"
 - i.e., type declarations

- Why don’t we have static typing everyone likes?

Types Outline

- Type concepts in COOL
- Notation for type rules
 - Logical rules of inference
- COOL type rules
- General properties of type systems

Cool Types

- The types are:
 - Class Names
 - SELF_TYPE

- The user declares types for identifiers
- The compiler infers types for expressions
 - Infers a type for every expression

Type Checking and Type Inference

- Type Checking is the process of verifying fully typed programs

- Type Inference is the process of filling in missing type information

- The two are different, but the terms are often used interchangeably

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars

- The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?

- Inference rules have the form
 If Hypothesis is true, then Conclusion is true

- Type checking computes via reasoning
 If E_1 and E_2 have certain types, then E_3 has a certain type

- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read with practice

- Start with a simplified system and gradually add features

- Building blocks
 - Symbol \land is "and"
 - Symbol \Rightarrow is "if-then"
 - $x:T$ is "x has type $T"

From English to an Inference Rule (2)

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

- $(e_1 \text{ has type Int } \land e_2 \text{ has type Int}) \Rightarrow e_1 + e_2 \text{ has type Int}$
- $(e_1: \text{Int } \land e_2: \text{Int}) \Rightarrow e_1 + e_2: \text{Int}$

From English to an Inference Rule (3)

The statement

$(e_1: \text{Int } \land e_2: \text{Int}) \Rightarrow e_1 + e_2: \text{Int}$

is a special case of

$\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n \Rightarrow \text{Conclusion}$

This is an inference rule.

Notation for Inference Rules

- By tradition inference rules are written
 $\vdash \text{Hypothesis}_1 \vdash \text{Hypothesis}_2 \vdash \ldots \vdash \text{Hypothesis}_n \vdash \text{Conclusion}$

- Cool type rules have hypotheses and conclusions
 $\vdash e:T$
 $\vdash \text{it is provable that } \ldots$

Two Rules

- i is an integer literal
 $\vdash i: \text{Int}$
 [Int]

- $e_1: \text{Int} \vdash e_2: \text{Int}$
 $\vdash e_1 + e_2: \text{Int}$
 [Add]
Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions.
- By filling in the templates, we can produce complete typings for expressions.

Example: $1 + 2$

1 is an int literal 2 is an int literal
\[\vdash 1 : \text{Int} \quad \vdash 2 : \text{Int} \]
\[\vdash 1 + 2 : \text{Int} \]

Soundness

- A type system is *sound* if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others:
 - i is an integer literal
 \[\vdash i : \text{Object} \]

Type Checking Proofs

- Type checking proves facts $e : T$
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e’s subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST

Rules for Constants

\[\vdash \text{false} : \text{Bool} \quad \text{[False]} \]
\[\vdash \text{s is a string literal} : \text{String} \quad \text{[String]} \]

Rule for New

new T produces an object of type T
- Ignore SELF_TYPE for now . . .
\[\vdash \text{new } T : T \quad \text{[New]} \]
Two More Rules

\[
\begin{align*}
\Gamma & \vdash e: \text{Bool} \\
\Gamma & \vdash !e: \text{Bool} \quad \text{[Not]} \\
\Gamma & \vdash e_1: \text{Bool} \\
\Gamma & \vdash e_2: \text{T} \\
\Gamma & \vdash \text{while } e_1 \text{ loop } e_2: \text{pool: Object} \quad \text{[Loop]}
\end{align*}
\]

A Problem

- What is the type of a variable reference?

 \[
 x \text{ is a variable} \\
 \Gamma \vdash x: \text{?} \quad \text{[Var]}
 \]

- The local, structural rule does not carry enough information to give \(x \) a type.

A Solution

- Put more information in the rules!
- A type environment gives types for free variables
 - A type environment is a function from ObjectIdentifiers to Types
 - A variable is free in an expression if it is not defined within the expression

Type Environments

Let \(O \) be a function from ObjectIdentifiers to Types

The sentence

\[
O \vdash e: \text{T}
\]

is read: Under the assumption that variables have the types given by \(O \), it is provable that the expression \(e \) has the type \(\text{T} \)

Modified Rules

The type environment is added to the earlier rules:

- \(i \) is an integer literal [Int]

 \[
 O \vdash i: \text{Int}
 \]

- \(O \vdash e_1: \text{Int} \quad O \vdash e_2: \text{Int} \quad O \vdash e_1 + e_2: \text{Int} \quad \text{[Add]}
 \]

New Rules

And we can write new rules:

- \(O(x) = \text{T} \quad \Gamma \vdash x: \text{T} \quad \text{[Var]}
 \]
Let

\[O(T_0/x) \vdash e_1 : T_1 \] \[O \vdash \text{let } x : T_0 \text{ in } e_1 : T_1 \]

\[O[T/y] \text{ means } O \text{ modified to return } T \text{ on argument } y \]

Note that the let-rule enforces variable scope

Let with Initialization

Now consider let with initialization:

\[O \vdash e_0 : T_0 \]
\[O[T_0/x] \vdash e_1 : T_1 \] \[\text{[Let-Init]} \]
\[O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1 \]

This rule is weak. Why?

Notes

• The type environment gives types to the free identifiers in the current scope
• The type environment is passed down the AST from the root towards the leaves
• Types are computed up the AST from the leaves towards the root

Subtyping

• Define a relation \(\leq \) on classes
 \(\text{– } X \leq X \)
 \(\text{– } X \leq Y \text{ if } X \text{ inherits from } Y \)
 \(\text{– } X \leq Z \text{ if } X \leq Y \text{ and } Y \leq Z \)
• An improvement

\[O \vdash e_0 : T_0 \]
\[O[T_0/x] \vdash e_1 : T_1 \]
\[T_0 \leq T \] \[\text{[Let-Init]} \]
\[O \vdash \text{let } x : T \leftarrow e_0 \text{ in } e_1 : T_1 \]

Assignment

• Both let rules are sound, but more programs typecheck with the second one
• More uses of subtyping:

\[O(x) = T_0 \]
\[O \vdash e_1 : T_1 \] \[\text{[Assign]} \]
\[T_1 = T_0 \]
\[O \vdash x \leftarrow e_1 : T_1 \]

Initialized Attributes

• Let \(O_c(x) = T \) for all attributes \(x : T \) in class \(C \)
• Attribute initialization is similar to let, except for the scope of names

\[O_c(x) = T_0 \]
\[O_c \vdash e_1 : T_1 \]
\[T_1 = T_0 \] \[\text{[Attr-Init]} \]
\[O_c \vdash x : T_0 \leftarrow e_1 :]
If-Then-Else

- Consider:
 \[
 \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi}
 \]
- The result can be either \(e_1\) or \(e_2\)
- The type is either \(e_1\)'s type or \(e_2\)'s type
- The best we can do is the smallest supertype larger than the type of \(e_1\) or \(e_2\)

Least Upper Bounds

- \(\text{lub}(X,Y)\), the least upper bound of \(X\) and \(Y\), is \(Z\) if
 - \(X \leq Z \land Y \leq Z\)
 - \(Z\) is an upper bound
 - \(X \leq Z' \land Y \leq Z' \Rightarrow Z \leq Z'\)
 - \(Z\) is least among upper bounds
- In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

\[
\begin{align*}
O & \vdash e_0 : \text{Bool} \\
O & \vdash e_1 : T_1 \quad \text{[If-Then-Else]} \\
O & \vdash e_2 : T_2 \\
\hline
O & \vdash \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi: lub}(T_1, T_2)
\end{align*}
\]

Case

- The rule for \textit{case} expressions takes a lub over all branches

\[
\begin{align*}
O & \vdash e_0 : T_0 \\
O & \vdash e_1 : T_1 \\
& \quad \cdots \\
O & \vdash e_n : T_n \quad \text{[Case]} \\
O & \vdash \text{case } e_0 \text{ of } x_1 : T_1 \rightarrow e_1; \cdots; x_n : T_n \rightarrow e_n; \text{ esac : lub}(T_1, \ldots, T_n)
\end{align*}
\]

Method Dispatch

- There is a problem with type checking method calls:

\[
\begin{align*}
O & \vdash e_0 : T_0 \\
O & \vdash e_1 : T_1 \\
& \quad \cdots \\
O & \vdash e_n : T_n \quad \text{[Dispatch]} \\
O & \vdash e_0.f(e_1, \ldots, e_n) : ?
\end{align*}
\]

Notes on Dispatch

- In Cool, method and object identifiers live in different name spaces
 - A method \(\text{foo}\) and an object \(\text{foo}\) can coexist in the same scope
 - In the type rules, this is reflected by a separate mapping \(M\) for method signatures
 \[
 M(C,f) = (T_{1,1}, \ldots, T_{n,1})
 \]
 means in class \(C\) there is a method \(f\)
 \[
 f(x_1 : T_{1,1}, \ldots, x_n : T_{n,1}) : T_{n,1}
 \]
The Dispatch Rule Revisited

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\vdots \]
\[O, M \vdash e_n : T_n \]

\[M(T_0, f) = (T'_1, \ldots, T'_n, T_{n+1}) \]
\[T_i \leq T'_i \text{ for } 1 \leq i \leq n \] \[\text{[Dispatch]} \]
\[O, M \vdash e_0.f(e_1, \ldots, e_n) : T_{n+1} \]

Static Dispatch

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type

Static Dispatch (Cont.)

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\vdots \]
\[O, M \vdash e_n : T_n \]

\[T_0 = T \] \[\text{[StaticDispatch]} \]

\[M(T_0, f) = (T'_1, \ldots, T'_n, T_{n+1}) \]
\[T_i = T'_i \text{ for } 1 \leq i \leq n \]
\[O, M \vdash e_0.T.f(e_1, \ldots, e_n) : T_{n+1} \]

The Method Environment

- The method environment must be added to all rules
- In most cases, \(M \) is passed down but not actually used
 - Only the dispatch rules use \(M \)

\[O, M \vdash e_1 : \text{Int} \]
\[O, M \vdash e_2 : \text{Int} \]

\[O, M \vdash e_1 + e_2 : \text{Int} \] \[\text{[Add]} \]

More Environments

- For some cases involving SELF
 - Type, we need to know the class in which an expression appears
- The full type environment for COOL:
 - A mapping \(O \) giving types to object id’s
 - A mapping \(M \) giving types to methods
 - The current class \(C \)

Sentences

The form of a sentence in the logic is

\[O, M, C \vdash e : T \]

Example:

\[O, M, C \vdash e_1 : \text{Int} \]
\[O, M, C \vdash e_2 : \text{Int} \]

\[O, M, C \vdash e_1 + e_2 : \text{Int} \] \[\text{[Add]} \]
Type Systems

- The rules in this lecture are COOL-specific
 - More info on rules for self next time
 - Other languages have very different rules
- General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Warning: Type rules are very compact!

One-Pass Type Checking

- COOL type checking can be implemented in a single traversal over the AST
- Type environment is passed down the tree
 - From parent to child
- Types are passed up the tree
 - From child to parent

Implementing Type Systems

\[
\begin{array}{c}
O,M,C \vdash e_1 : \text{Int} \\
O,M,C \vdash e_2 : \text{Int} \\
O,M,C \vdash e_1 + e_2 : \text{Int}
\end{array}
\] [Add]

TypeCheck(Environment, e_1 + e_2) = {
 T_1 = TypeCheck(Environment, e_1);
 T_2 = TypeCheck(Environment, e_2);
 Check T_1 == T_2 == Int;
 return Int;
}