Intermediate Code & Local Optimizations

Lecture 14

Lecture Outline

• Intermediate code
• Local optimizations
• Next time: global optimizations

Code Generation Summary

• We have discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation

• Our compiler maps AST to assembly language
 - And does not perform optimizations

Optimization

• Optimization is our last compiler phase
• Most complexity in modern compilers is in the optimizer
 - Also by far the largest phase
• First, we need to discuss intermediate languages

Why Intermediate Languages?

• When should we perform optimizations?
 - On AST
 - Pro: Machine independent
 - Con: Too high level
 - On assembly language
 - Pro: Exposes optimization opportunities
 - Con: Machine dependent
 - Con: Must reimplement optimizations when retargetting
 - On an intermediate language
 - Pro: Machine independent
 - Pro: Exposes optimization opportunities

Intermediate Languages

• Intermediate language = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., push translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Three-Address Intermediate Code

- Each instruction is of the form
 \(x := y \text{ op } z \)
 \(x := \text{ op } y \)
 - \(y \) and \(z \) are registers or constants
 - Common form of intermediate code
- The expression \(x + y * z \) is translated
 \(t_1 := y * z \)
 \(t_2 := x + t_1 \)
 - Each subexpression has a "name"

Generating Intermediate Code

- Similar to assembly code generation
- But use any number of IL registers to hold intermediate results

Generating Intermediate Code (Cont.)

- \(\text{igen}(e, t) \) function generates code to compute the value of \(e \) in register \(t \)
- Example:
 \[
 \text{igen}(e_1 + e_2, t) = \\
 \text{igen}(e_1, t_1) \quad (t_1 \text{ is a fresh register}) \\
 \text{igen}(e_2, t_2) \quad (t_2 \text{ is a fresh register}) \\
 t := t_1 + t_2
 \]
- Unlimited number of registers
 \(\Rightarrow \) simple code generation

Intermediate Code Notes

- You should be able to use intermediate code
 - At the level discussed in lecture
- You are not expected to know how to generate intermediate code
 - Because we won’t discuss it
 - But really just a variation on code generation . . .

An Intermediate Language

- \(P \rightarrow S | P \)
- \(S \rightarrow \text{id} \text{ := id op id} \)
 - \text{id}'s are register names
 - Constants can replace id's
 - Typical operators: +, -, *

Definition, Basic Blocks

- A basic block is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

- Idea:
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - A basic block is a single-entry, single-exit, straight-line code segment
Basic Block Example

- Consider the basic block
 1. L:
 2. \(t := 2 \times x \)
 3. \(w := t + x \)
 4. if \(w > 0 \) goto L

- (3) executes only after (2)
 - We can change (3) to \(w := 3 \times x \)
 - Can we eliminate (2) as well?

Definition. Control-Flow Graphs

- A control-flow graph is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can pass from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is `jump L_b`
 - E.g., execution can fall-through from block A to block B

Example of Control-Flow Graphs

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal

Optimization Overview

- Optimization seeks to improve a program’s resource utilization
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.
- Optimization should not alter what the program computes
 - The answer must still be the same

A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 - Apply to a basic block in isolation
 2. Global optimizations
 - Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 - Apply across method boundaries
- Most compilers do (1), many do (2), few do (3)

Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known
- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in compilation time
 - Some optimizations have low benefit
 - Many fancy optimizations are all three!
- Goal: Maximum benefit for minimum cost
Local Optimizations
- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification

Algebraic Simplification
- Some statements can be deleted
 \[
 x := x + 0 \\
 x := x * 1
 \]
- Some statements can be simplified
 \[
 x := x * 0 \quad \Rightarrow \quad x := 0 \\
 y := y ** 2 \quad \Rightarrow \quad y := y * y \\
 x := x * 8 \quad \Rightarrow \quad x := x << 3 \\
 x := x * 15 \quad \Rightarrow \quad t := x << 4; x := t - x
 \]
 (on some machines << is faster than *; but not on all!)

Constant Folding
- Operations on constants can be computed at compile time
 - If there is a statement \(x := y \text{ op } z \)
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 2 + 2 \Rightarrow x := 4 \)
- Example: if \(2 < 0 \) jump L can be deleted
- When might constant folding be dangerous?

Flow of Control Optimizations
- Eliminate unreachable basic blocks:
 - Code that is unreachable from the initial block
 - E.g., basic blocks that are not the target of any jump or "fall through" from a conditional
- Why would such basic blocks occur?
- Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)

Single Assignment Form
- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment
- Rewrite intermediate code in single assignment form
 \[
 x := z + y \quad \Rightarrow \quad b := z + y \\
 a := x \quad \Rightarrow \quad a := b \\
 x := 2 * b \quad \Rightarrow \quad x := 2 * b \\
 \]
 (\(b \) is a fresh register)
 - More complicated in general, due to loops

Common Subexpression Elimination
- If
 - Basic block is in single assignment form
 - A definition \(x := \) is the first use of \(x \) in a block
- Then
 - When two assignments have the same rhs, they compute the same value
- Example:
 \[
 x := y + z \quad \Rightarrow \quad ...
 w := y + z \quad \Rightarrow \quad w := x
 \]
 (the values of \(x, y, \) and \(z \) do not change in the ... code)
Copy Propagation

- If \(w := x \) appears in a block, replace subsequent uses of \(w \) with uses of \(x \)
 - Assumes single assignment form

 Example:
 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times a
 \end{align*}
 \]

 \[
 \begin{align*}
 x &:= 2 \times a \\
 x &:= 2 \times b
 \end{align*}
 \]

- Only useful for enabling other optimizations
 - Constant folding
 - Dead code elimination

Copy Propagation and Constant Folding

- Example:
 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 2 \times a \\
 y &:= x + 6 \\
 t &:= x \times y
 \end{align*}
 \]

 \[
 \begin{align*}
 x &:= 10 \\
 y &:= 16 \\
 t &:= x \times 4
 \end{align*}
 \]

Copy Propagation and Dead Code Elimination

If \(w := \text{rhs} \) appears in a basic block
\(w \) does not appear anywhere else in the program

Then
the statement \(w := \text{rhs} \) is dead and can be eliminated
- Dead = does not contribute to the program’s result

Example: \(\text{(a is not used anywhere else)} \)
 \[
 \begin{align*}
 x &:= z + y \\
 b &:= z + y \\
 a &:= x \\
 x &:= 2 \times a
 \end{align*}
 \]

Applying Local Optimizations

- Each local optimization does little by itself
- Typically optimizations interact
 - Performing one optimization enables another
- Optimizing compilers repeat optimizations until no improvement is possible
 - The optimizer can also be stopped at any point to limit compilation time

An Example

- Initial code:
 \[
 \begin{align*}
 a &:= x \times 2 \\
 b &:= 3 \\
 c &:= x \\
 d &:= c \times c \\
 e &:= b \times 2 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]

An Example

- Algebraic optimization:
 \[
 \begin{align*}
 a &:= x \times 2 \\
 b &:= 3 \\
 c &:= x \\
 d &:= c \times c \\
 e &:= b \times 2 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]
An Example

- Algebraic optimization:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := c \times c \\
 e := b \ll 1 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- Copy propagation:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := c \times c \\
 e := b \ll 1 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- Copy propagation:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 3 \ll 1 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- Constant folding:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- Constant folding:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- Common subexpression elimination:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]
An Example

- **Common subexpression elimination:**

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a \times d \\
 g := e \times f
 \]

An Example

- **Copy propagation:**

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]

An Example

- **Copy propagation:**

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + a \\
 g := 6 \times f
 \]

An Example

- **Dead code elimination:**

 \[
 a := x \times x \\
 f := a \times a \\
 g := 6 \times f
 \]

- This is the final form

Peephole Optimizations on Assembly Code

- **These optimizations work on intermediate code**
 - Target independent
 - But they can be applied on assembly language also

- **Peephole optimization is effective for improving assembly code**
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules
 \(i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \)
 where the rhs is the improved version of the lhs

- Example:
 \[\text{move } $a $b, \text{move } $b $a \rightarrow \text{move } $a $b\]
 - Works if \(\text{move } $b $a \) is not the target of a jump

- Another example
 \[\text{addiu } $a $a i, \text{addiu } $a $a j \rightarrow \text{addiu } $a $a i+j\]

Local Optimizations: Notes

- Intermediate code is helpful for many optimizations

- Many simple optimizations can still be applied on assembly language

- “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term

- Next time: global optimizations

Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: \(\text{addiu } $a $b 0 \rightarrow \text{move } $a $b\)
 - Example: \(\text{move } $a $a \rightarrow \text{move } $a $a\)
 - These two together eliminate \(\text{addiu } $a $a 0\)

- As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect