Intermediate Code & Local Optimizations

CS143
Lecture 14

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

• Intermediate code

• Local optimizations

• Next time: global optimizations
Code Generation Summary

• We have discussed
 – Runtime organization
 – Simple stack machine code generation
 – Improvements to stack machine code generation

• Our compiler maps AST to assembly language
 – And does not perform optimizations
Optimization

• Optimization is our last compiler phase

• Most complexity in modern compilers is in the optimizer
 – Also by far the largest phase

• First, we need to discuss intermediate representations
Why Intermediate Representations?

• When should we perform optimizations?
 – On AST
 • Pro: Machine independent
 • Con: Too high level
 – On assembly language
 • Pro: Exposes optimization opportunities
 • Con: Machine dependent
 • Con: Must reimplement optimizations when retargetting
 – On an intermediate representation (language)
 • Pro: Machine independent
 • Pro: Exposes optimization opportunities
Intermediate Representations (IR)

- Intermediate representation = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., `push` translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Definition: Three-Address Intermediate Code

- Each instruction is of the form
 \[x := y \text{ op } z \]
 \[x := \text{ op } z \]
 - \(y \) and \(z \) are registers or constants
 - Common form of intermediate code

- The expression \(x + y \ast z \) is translated
 \[t_1 := y \ast z \]
 \[t_2 := x + t_1 \]
 - Each subexpression has a “name”
Generating Intermediate Code

- Similar to assembly code generation
- But use any number of IR registers to hold intermediate results
Generating Intermediate Code (Cont.)

• **igen(e, t)** function generates code to compute the value of e in register t

• Example:

 $$igen(e_1 + e_2, t) =
 \begin{align*}
 igen(e_1, t_1) & \quad (t_1 \text{ is a fresh register}) \\
 igen(e_2, t_2) & \quad (t_2 \text{ is a fresh register}) \\
 t := t_1 + t_2
 \end{align*}$$

• Unlimited number of registers
 \[\Rightarrow \text{simple code generation} \]
Intermediate Code Notes

• You should be able to use intermediate code
 – At the level discussed in lecture

• You are not expected to know how to generate intermediate code
 – Because we won’t discuss it
 – But really just a variation on code generation . . .
An Intermediate Representation

$P \rightarrow S \ P \ | \ \varepsilon$

$S \rightarrow id := id \ op \ id$
 $| \ id := op \ id$
 $| \ id := id$
 $| \ push \ id$
 $| \ id := pop$
 $| \ if \ id \ relop \ id \ goto \ L$
 $| \ L:\$
 $| \ jump \ L$

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *
Definition: Basic Blocks

• A basic block is a maximal sequence of instructions with:
 – no labels (except at the first instruction), and
 – no jumps (except in the last instruction)

• Idea:
 – Cannot jump into a basic block (except at beginning)
 – Cannot jump out of a basic block (except at end)
 – A basic block is a single-entry, single-exit, straight-line code segment
Basic Block Example

- Consider the basic block
 1. L:
 2. \(t := 2 \times x \)
 3. \(w := t + x \)
 4. if \(w > 0 \) goto L’

- (3) executes only after (2)
 - We can change (3) to \(w := 3 \times x \)
 - Can we eliminate (2) as well?
Definition: Control-Flow Graphs (CFG)

• A **control-flow graph** is a directed graph with
 – Basic blocks as nodes
 – An edge from block A to block B if the execution can pass from the last instruction in A to the first instruction in B
 • E.g., the last instruction in A is `jump L_B`
 • or execution can fall-through from block A to block B
Example of Control-Flow Graphs

• The body of a method (or procedure) can be represented as a control-flow graph

 x := 1
 i := 1
 L:
 x := x * x
 i := i + 1
 if i < 10 goto L

• There is one initial node

• All “return” nodes are terminal
Optimization Overview

• Optimization seeks to improve a program’s resource utilization
 – Execution time (most often)
 – Code size
 – Network messages sent, etc.

• Optimization should not alter what the program computes
 – The answer must still be the same
A Classification of Optimizations

• For languages like C and Cool there are three granularities of optimizations

1. Local optimizations
 • Apply to a basic block in isolation

2. Global optimizations
 • Apply to a control-flow graph (method body) in isolation

3. Inter-procedural optimizations
 • Apply across method boundaries

• Most compilers do (1), many do (2), few do (3)
Key Optimizations

Optimizations:
• basic block optimization
• dataflow optimization
• loop optimization
• instruction selection / peephole optimization
• register allocation

Object-Oriented Languages:
• inlining
• calculate targets of method calls
• unboxing

Functional languages:
• tail recursion elimination
• deforestation
Cost of Optimizations

• In practice, a conscious decision is made not to implement the fanciest optimization known

• Why?
 – Some optimizations are hard to implement
 – Some optimizations are costly in compilation time
 – Some optimizations have low benefit
 – Many fancy optimizations are all three!

• Goal: Maximum benefit for minimum cost
Local Optimizations

• The simplest form of optimizations

• No need to analyze the whole procedure body
 – Just the basic block in question

• Example: algebraic simplification
Algebraic Simplification

• Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

• Some statements can be simplified
 \[x := x \times 0 \quad \Rightarrow \quad x := 0 \]
 \[y := y ** 2 \quad \Rightarrow \quad y := y \times y \]
 \[x := x \times 8 \quad \Rightarrow \quad x := x \ll 3 \]
 \[x := x \times 15 \quad \Rightarrow \quad t := x \ll 4; \; x := t - x \]

(on some machines \(\ll\) is faster than \(\times\); but not on all!)
Constant Folding

• Operations on constants can be computed at compile time
 – If there is a statement $x := y \text{ op } z$
 – And y and z are constants
 – Then $y \text{ op } z$ can be computed at compile time

• Example: $x := 2 + 2 \Rightarrow x := 4$
• Example: if $2 < 0$ jump L can be deleted
• When might constant folding be dangerous?
Flow of Control Optimizations

• Eliminate unreachable basic blocks:
 – Code that is unreachable from the initial block
 • E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller
 – And sometimes also faster
 • Due to memory cache effects (increased spatial locality)
Definition: Static Single Assignment (SSA) Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment

- Rewrite intermediate code in single assignment form

 \[
 \begin{align*}
 x &:= z + y & b &:= z + y \\
 a &:= x & a &:= b \\
 x &:= 2 \times x & x &:= 2 \times b
 \end{align*}
 \]

 \(b\) is a fresh register

 - More complicated in general, due to loops
Common Subexpression Elimination

• If
 – Basic block is in single assignment form
 – A definition $x :=$ is the first use of x in a block

• Then
 – When two assignments have the same rhs, they compute the same value

• Example:
 $$x := y + z \quad x := y + z$$
 $$\ldots \quad \Rightarrow \quad \ldots$$
 $$w := y + z \quad w := x$$
 (the values of x, y, and z do not change in the \ldots code)
Copy Propagation

• If $w := x$ appears in a block, replace subsequent uses of w with uses of x
 – Assumes single assignment form

• Example:

 \[
 \begin{align*}
 b & := z + y & b & := z + y \\
 a & := b & a & := b \\
 x & := 2 \times a & x & := 2 \times b
 \end{align*}
 \]

• Only useful for enabling other optimizations
 – Constant folding
 – Dead code elimination
Copy Propagation and Constant Folding

• Example:

\[
\begin{align*}
a & := 5 \\ x & := 2 \times a \\ y & := x + 6 \\ t & := x \times y \\
\end{align*}
\Rightarrow
\begin{align*}
a & := 5 \\ x & := 10 \\ y & := 16 \\ t & := 160
\end{align*}
\]
Copy Propagation and Dead Code Elimination

If

\[w := \text{rhs} \] appears in a basic block
\[w \] does not appear anywhere else in the program

Then

the statement \[w := \text{rhs} \] is dead and can be eliminated
– \textbf{Dead} = does not contribute to the program’s result

Example: (\textbf{a} is not used anywhere else)

\[\begin{align*}
 b & := z + y \\
 a & := b \\
 x & := 2 \times a \\
 b & := z + y \\
 a & := b \\
 x & := 2 \times b \\
 b & := z + y \\
 b & := z + y \\
 b & := z + y \\
\end{align*} \]
Applying Local Optimizations

• Each local optimization does little by itself

• Typically optimizations interact
 – Performing one optimization enables another

• Optimizing compilers repeat optimizations until no improvement is possible
 – The optimizer can also be stopped at any point to limit compilation time
An Example

• Initial code:

```plaintext
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
```
An Example

• Algebraic optimization:

\[
\begin{align*}
 a & := x^2 \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f
\end{align*}
\]
An Example

• Algebraic optimization:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := c \times c \\
e & := b << 1 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]
An Example

• Copy propagation:

\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= c \times c \\
e &:= b \ll 1 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]
An Example

• Copy propagation:

 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f
An Example

• Constant folding:

\[
\begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 3 \ll 1 \\
 f & := a + d \\
 g & := e \times f
\end{align*}
\]
An Example

• Constant folding:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := x \times x \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]
An Example

- Common subexpression elimination:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• Common subexpression elimination:

\[
\begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := a \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
\end{align*}
\]
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f
An Example

- Copy propagation:

 \[
 \begin{align*}
 a &:= x \ast x \\
 b &:= 3 \\
 c &:= x \\
 d &:= a \\
 e &:= 6 \\
 f &:= a + a \\
 g &:= 6 \ast f
 \end{align*}
 \]
An Example

• Dead code elimination:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + a \\
g & := 6 \times f
\end{align*}
\]
An Example

• Dead code elimination:
 \[a := x \times x \]
 \[f := a + a \]
 \[g := 6 \times f \]

• This is the final form
Peephole Optimizations on Assembly Code

• These optimizations work on intermediate code
 – Target independent
 – But they can be applied on assembly language also

• Peephole optimization is effective for improving assembly code
 – The “peephole” is a short sequence of (usually contiguous) instructions
 – The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement rules
 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
 where the rhs is the improved version of the lhs

• Example:
 \[
 \text{move } \$a \ \$b, \ \text{move } \$b \ \$a \rightarrow \ \text{move } \$a \ \$b
 \]
 – Works if \text{move } \$b \ \$a is not the target of a jump

• Another example
 \[
 \text{addiu } \$a \ \$a \ i, \ \text{addiu } \$a \ \$a \ j \rightarrow \ \text{addiu } \$a \ \$a \ i+j
 \]
Peephole Optimizations (Cont.)

• Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 – Example: `addiu $a $b 0 → move $a $b`
 – Example: `move $a $a →`
 – These two together eliminate `addiu $a $a 0`

• As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect
Local Optimizations: Notes

• Intermediate code is helpful for many optimizations

• Many simple optimizations can still be applied on assembly language

• “Program optimization” is somewhat misnamed
 – Code produced by “optimizers” is not optimal in any reasonable sense
 – “Program improvement” is a more appropriate term

• Next time: global optimizations