Global Optimization

Lecture 15

Lecture Outline

• Global flow analysis
• Global constant propagation
• Liveness analysis

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= X + Y
\end{align*}
\]

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= 3 + Y
\end{align*}
\]

Global Optimization

These optimizations can be extended to an entire control-flow graph

Global Optimization

These optimizations can be extended to an entire control-flow graph
Correctness

• How do we know it is OK to globally propagate constants?
• There are situations where it is incorrect:

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
(X &:= 4) \\
A &:= Z \times X
\end{align*}
\]

Correctness (Cont.)

To replace a use of \(x\) by a constant \(k\) we must know that:

On every path to the use of \(x\), the last assignment to \(x\) is \(x := k\) **

Example 1 Revisited

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
A &:= Z \times X
\end{align*}
\]

Example 2 Revisited

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
Y &:= 0 \\
A &:= Z \times X
\end{align*}
\]

Discussion

• The correctness condition is not trivial to check
• “All paths” includes paths around loops and through branches of conditionals
• Checking the condition requires global analysis
 - An analysis of the entire control-flow graph

Global Analysis

Global optimization tasks share several traits:
• The optimization depends on knowing a property \(X\) at a particular point in program execution
• Proving \(X\) at any point requires knowledge of the entire program
• It is OK to be conservative. If the optimization requires \(X\) to be true, then want to know either
 • \(X\) is definitely true
 • Don’t know if \(X\) is true
• It is always safe to say “don’t know”
Global Analysis (Cont.)

• Global dataflow analysis is a standard technique for solving problems with these characteristics.

• Global constant propagation is one example of an optimization that requires global dataflow analysis.

Global Constant Propagation

• Global constant propagation can be performed at any point where ** holds.

• Consider the case of computing ** for a single variable X at all program points.

Global Constant Propagation (Cont.)

• To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c</td>
<td>X is constant c</td>
</tr>
<tr>
<td>⊥</td>
<td>X is not a constant</td>
</tr>
</tbody>
</table>

Example

Using the Information

• Given global constant information, it is easy to perform the optimization:
 - Simply inspect the x = ? associated with a statement using x.
 - If x is constant at that point replace that use of x by the constant.

• But how do we compute the properties x = ?

The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

- The idea is to “push” or “transfer” information from one statement to the next.
- For each statement s, we compute information about the value of x immediately before and after s.

\[
C(s,x,in) = \text{value of } x \text{ before } s \\
C(s,x,out) = \text{value of } x \text{ after } s
\]

Transfer Functions

- Define a transfer function that transfers information one statement to another.
- In the following rules, let statement s have immediate predecessor statements $p_1, ..., p_n$.

Rule 1

If $C(p_i, x, out) = \top$ for any i, then $C(s, x, in) = \top$.

Rule 2

If $C(p_i, x, out) = c$ & $C(p_j, x, out) = d$ & $d \neq c$ then $C(s, x, in) = \top$.

Rule 3

If $C(p_i, x, out) = c$ or \bot for all i, then $C(s, x, in) = c$.

Rule 4

If $C(p_i, x, out) = \bot$ for all i, then $C(s, x, in) = \bot$.

[Diagrams corresponding to each rule are shown.]
The Other Half

• Rules 1-4 relate the *out* of one statement to the *in* of the next statement

• Now we need rules relating the *in* of a statement to the *out* of the same statement

Rule 5

\[
C(s, x, \text{out}) = \bot \quad \text{if} \quad C(s, x, \text{in}) = \bot
\]

Rule 6

\[
C(x := c, x, \text{out}) = c \quad \text{if} \quad c \text{ is a constant}
\]

Rule 7

\[
C(x := f(...), x, \text{out}) = \top
\]

Rule 8

\[
C(y := ..., x, \text{out}) = C(y := ..., x, \text{in}) \quad \text{if} \quad x \leftrightarrow y
\]

An Algorithm

1. For every entry \(s \) to the program, set
 \(C(s, x, \text{in}) = \top \)

2. Set \(C(s, x, \text{in}) = C(s, x, \text{out}) = \bot \) everywhere else

3. Repeat until all points satisfy 1-8:
 Pick \(s \) not satisfying 1-8 and update using the appropriate rule
The Value \(\perp \)

- To understand why we need \(\perp \), look at a loop

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 3 \\
A &:= 2 * X \\
A &< B
\end{align*}
\]

Discussion

- Consider the statement \(Y := 0 \)
- To compute whether \(X \) is constant at this point, we need to know whether \(X \) is constant at the two predecessors
 - \(X := 3 \)
 - \(A := 2 * X \)
- But info for \(A := 2 * X \) depends on its predecessors, including \(Y := 0 \)

The Value \(\perp \) (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value \(\perp \) means “So far as we know, control never reaches this point”

Example

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 3 \\
A &:= 2 * X \\
A &< B
\end{align*}
\]
Example

\[
\begin{align*}
X &= 3 \\
B &= 0 \\
X &= 3 \\
Y &= Z + W \\
Y &= 0 \\
A &= Z 	imes X \\
A &= B \\
X &= 3 \\
X &= 3 \\
X &= 3 \\
X &= 3
\end{align*}
\]

Orderings

- We can simplify the presentation of the analysis by ordering the values
 \[\bot < C < T \]
- Drawing a picture with “lower” values drawn lower, we get

Orderings (Cont.)

- \(T \) is the greatest value, \(\bot \) is the least
 - All constants are in between and incomparable
- Let \(\text{lub} \) be the least-upper bound in this ordering
- Rules 1-4 can be written using \(\text{lub} \):
 \[C(s, x, \text{in}) = \text{lub} \{ C(p, x, \text{out}) \mid p \text{ is a predecessor of } s \} \]

Termination

- Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes
- The use of \(\text{lub} \) explains why the algorithm terminates
 - Values start as \(\bot \) and only increase
 - \(\bot \) can change to a constant, and a constant to \(T \)
 - Thus, \(C(s, x, __) \) can change at most twice

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = Number of \(C(__) \) value computed \(\times \) 2 = Number of program statements \(\times \) 4

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, \(X := 3 \) is dead (assuming \(X \) not used elsewhere)
Live and Dead

- The first value of \(x \) is dead (never used)
- The second value of \(x \) is live (may be used)
- Liveness is an important concept

\[
\begin{align*}
\text{L}(p, x, \text{out}) &= \lor \{ \text{L}(s, x, \text{in}) | s \text{ a successor of } p \} \\
\end{align*}
\]

Liveness

A variable \(x \) is live at statement \(s \) if
- There exists a statement \(s' \) that uses \(x \)
- There is a path from \(s \) to \(s' \)
- That path has no intervening assignment to \(x \)

Global Dead Code Elimination

- A statement \(x := \ldots \) is dead code if \(x \) is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

Liveness Rule 1

\[
\begin{align*}
\text{L}(p, x, \text{out}) &= \lor \{ \text{L}(s, x, \text{in}) | s \text{ a successor of } p \} \\
\end{align*}
\]

Liveness Rule 2

\[
\begin{align*}
\text{L}(s, x, \text{in}) &= \text{true} \text{ if } s \text{ refers to } x \text{ on the rhs} \\
\end{align*}
\]
Liveness Rule 3

\[L(x := e, x, \text{in}) = \text{false} \quad \text{if } e \text{ does not refer to } x \]

Algorithm

1. Let all \(L(\ldots) = \text{false} \) initially
2. Repeat until all statements \(s \) satisfy rules 1-4
 - Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from \text{false} to \text{true}, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

- Constant propagation is a \textit{forwards} analysis: information is pushed from inputs to outputs
- Liveness is a \textit{backwards} analysis: information is pushed from outputs back towards inputs

Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points