Global Optimization

Lecture 15

Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &= 3 \\
Y &= Z \times W \\
Q &= X + Y \\
\end{align*}
\]

\[
\begin{align*}
Y &= Z \times W \\
Q &= X + Y \\
A &= 2 \times X \\
\end{align*}
\]

Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &= 3 \\
B &> 0 \\
Y &= Z + W \\
Y &= 0 \\
A &= 2 \times X \\
\end{align*}
\]
Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:
 \[X := 3 \]
 \[B > 0 \]
 \[Y := Z + W \]
 \[X := 4 \]
 \[Y := 0 \]
 \[A := 2 \times X \]

Correctness (Cont.)

To replace a use of \(x \) by a constant \(k \) we must know that:

- On every path to the use of \(x \), the last assignment to \(x \) is \(x := k \) **

Example 1 Revisited

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]

Example 2 Revisited

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[Y := 0 \]
\[A := 2 \times X \]

Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis of the entire control-flow graph

Global Analysis

Global optimization tasks share several traits:
- The optimization depends on knowing a property \(X \) at a particular point in program execution
- Proving \(X \) at any point requires knowledge of the entire program
- It is OK to be conservative. If the optimization requires \(X \) to be true, then want to know either
 - \(X \) is definitely true
 - Don’t know if \(X \) is true
- It is always safe to say “don’t know”
Global Analysis (Cont.)

- Global dataflow analysis is a standard technique for solving problems with these characteristics.
- Global constant propagation is one example of an optimization that requires global dataflow analysis.

Global Constant Propagation

- Global constant propagation can be performed at any point where \(** \) holds.
- Consider the case of computing \(** \) for a single variable \(X \) at all program points.

Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with \(X \) at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>(C)</td>
<td>(X) is constant (c)</td>
</tr>
<tr>
<td>(?)</td>
<td>(X) is not a constant</td>
</tr>
</tbody>
</table>

Example

![Diagram of program with labeled variables and assignments]

Using the Information

- Given global constant information, it is easy to perform the optimization:
 - Simply inspect the \(x = ? \) associated with a statement using \(x \).
 - If \(x \) is constant at that point replace that use of \(x \) by the constant.
- But how do we compute the properties \(x = ? \)?

The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

- The idea is to “push” or “transfer” information from one statement to the next.
- For each statement s, we compute information about the value of x immediately before and after s

 $C(s,x,\text{in}) = \text{value of } x \text{ before } s$
 $C(s,x,\text{out}) = \text{value of } x \text{ after } s$

Transfer Functions

- Define a transfer function that transfers information one statement to another.
- In the following rules, let statement s have immediate predecessor statements p_1, \ldots, p_n

Rule 1

If $C(p_i, x, \text{out}) = \bot$ for any i, then $C(s, x, \text{in}) = \top$

Rule 2

$C(p_i, x, \text{out}) = c$ & $C(p_j, x, \text{out}) = d$ & $d \neq c$ then

$C(s, x, \text{in}) = \bot$

Rule 3

If $C(p_i, x, \text{out}) = c$ or \bot for all i, then $C(s, x, \text{in}) = c$

Rule 4

If $C(p_i, x, \text{out}) = \bot$ for all i, then $C(s, x, \text{in}) = \bot$
The Other Half

• Rules 1-4 relate the out of one statement to the in of the next statement

• Now we need rules relating the in of a statement to the out of the same statement

Rule 5
\[C(s, x, \text{out}) = \bot \text{ if } C(s, x, \text{in}) = \bot \]

Rule 6
\[C(x := c, x, \text{out}) = c \text{ if } c \text{ is a constant} \]

Rule 7
\[C(x := f(\ldots), x, \text{out}) = \top \]

Rule 8
\[C(y := \ldots, x, \text{out}) = C(y := \ldots, x, \text{in}) \text{ if } x \leftrightarrow y \]

An Algorithm
1. For every entry \(s \) to the program, set \(C(s, x, \text{in}) = \top \)
2. Set \(C(s, x, \text{in}) = C(s, x, \text{out}) = \bot \) everywhere else
3. Repeat until all points satisfy 1-8:
 Pick \(s \) not satisfying 1-8 and update using the appropriate rule
The Value \perp

- To understand why we need \perp, look at a loop

\[
\begin{align*}
Y &:= Z + W \\
A &:= 2 \times X \\
A &= B \\
X &:= 3 \\
X &> 0 \\
X &:= 3
\end{align*}
\]

Discussion

- Consider the statement $Y := 0$
- To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors
 - $X := 3$
 - $A := 2 \times X$
- But info for $A := 2 \times X$ depends on its predecessors, including $Y := 0$!

The Value \perp (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value \perp means “So far as we know, control never reaches this point”

Example
Example

- Example:
 - $X := 3$
 - $B > 0$
 - $Y := Z + W$
 - $Y := 0$
 - $A := 2 \times X$
 - $A < B$

Orderings

- We can simplify the presentation of the analysis by ordering the values

 $\bot < c < \top$

- Drawing a picture with “lower” values drawn lower, we get

Orderings (Cont.)

- \top is the greatest value, \bot is the least
 - All constants are in between and incomparable

- Let lub be the least-upper bound in this ordering

- Rules 1-4 can be written using lub:

 $C(s, x, \text{in}) = \text{lub} \{ C(p, x, \text{out}) | p \text{ is a predecessor of } s \}$

Termination

- Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

- The use of lub explains why the algorithm terminates
 - Values start as \bot and only increase
 - \bot can change to a constant, and a constant to \top
 - Thus, $C(s, x,)$ can change at most twice

Termination (Cont.)

- Thus the algorithm is linear in program size

 Number of steps =
 Number of $C(\text{...})$ value computed $\times 2$

 Number of program statements $\times 4$

Liveness Analysis

- Once constants have been globally propagated, we would like to eliminate dead code

 After constant propagation, $X := 3$ is dead
 (assuming X not used elsewhere)
Live and Dead

- The first value of x is **dead** (never used)
- The second value of x is **live** (may be used)
- Liveness is an important concept

Live and Dead

- $X := 3$
- $X := 4$
- $Y := X$

Liveness

A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x

Global Dead Code Elimination

- A statement $x := \ldots$ is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

Liveness Rule 1

\[
L(p, x, \text{out}) = \vee \{ L(s, x, \text{in}) \mid s \text{ a successor of } p \}
\]

Liveness Rule 2

\[
L(s, x, \text{in}) = \text{true} \quad \text{if } s \text{ refers to } x \text{ on the rhs}
\]
Liveness Rule 3

\[L(x := e, x, \text{in}) = \text{false} \quad \text{if} \quad e \text{ does not refer to } x \]

Liveness Rule 4

\[L(s, x, \text{in}) = L(s, x, \text{out}) \quad \text{if} \quad s \text{ does not refer to } x \]

Algorithm

1. Let all \(L(\ldots) = \text{false} \) initially
2. Repeat until all statements \(s \) satisfy rules 1-4
 Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from \text{false} to \text{true}, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:
- Constant propagation is a \textit{forwards} analysis: information is pushed from inputs to outputs
- Liveness is a \textit{backwards} analysis: information is pushed from outputs back towards inputs

Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points