Register Allocation

Lecture 16

Lecture Outline

• Memory Hierarchy Management
• Register Allocation
 • Register interference graph
 • Graph coloring heuristics
 • Spilling
• Cache Management

The Memory Hierarchy

The Memory Hierarchy

Managing the Memory Hierarchy

• Most programs are written as if there are only two kinds of memory: main memory and disk
 • Programmer is responsible for moving data from disk to memory (e.g., file I/O)
 • Hardware is responsible for moving data between memory and caches
 • Compiler is responsible for moving data between memory and registers

Current Trends

• Power usage limits
 - Size and speed of registers/caches
 - Speed of processors
• But
 - The cost of a cache miss is very high
 - Typically requires 2-3 caches to bridge fast processor with large main memory
• It is very important to:
 - Manage registers properly
 - Manage caches properly
• Compilers are good at managing registers

The Register Allocation Problem

• Intermediate code uses unlimited temporaries
 • Simplifies code generation and optimization
 • Complicates final translation to assembly
• Typical intermediate code uses too many temporaries
The Register Allocation Problem (Cont.)

• The problem:
 Rewrite the intermediate code to use no more temporaries than there are machine registers

• Method:
 - Assign multiple temporaries to each register
 - But without changing the program behavior

History

• Register allocation is as old as compilers
 - Register allocation was used in the original FORTRAN compiler in the '50s
 - Very crude algorithms

• A breakthrough came in 1980
 - Register allocation scheme based on graph coloring
 - Relatively simple, global and works well in practice

An Example

• Consider the program
 \[a := c + d\]
 \[e := a + b\]
 \[f := e - 1\]

• Assume \(a\) and \(e\) dead after use
 - Temporary \(a\) can be "reused" after \(e := a + b\)
 - So can temporary \(e\)

• Can allocate \(a\), \(e\), and \(f\) all to one register \((r_1)\):
 \[r_1 := r_2 + r_3\]
 \[r_1 := r_1 + r_4\]
 \[r_1 := r_1 - 1\]

The Idea

Temporaries \(t_1\) and \(t_2\) can share the same register if at any point in the program at most one of \(t_1\) or \(t_2\) is live.

Or

If \(t_1\) and \(t_2\) are live at the same time, they cannot share a register

Algorithm: Part I

• Compute live variables for each point:
 \((a,c)\)
 \((c,d)\)
 \((c,e)\)
 \((f := 2 * e)\)

The Register Interference Graph

• Construct an undirected graph
 - A node for each temporary
 - An edge between \(t_1\) and \(t_2\) if they are live simultaneously at some point in the program

• This is the register interference graph (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them
Example

- For our example:

 ![Graph](image)

- E.g., b and c cannot be in the same register
- E.g., b and d could be in the same register

Notes on Register Interference Graphs

- Extracts exactly the information needed to characterize legal register assignments
- Gives a global (i.e., over the entire flow graph) picture of the register requirements
- After RIG construction the register allocation algorithm is architecture independent

Definitions

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is k-colorable if it has a coloring with k colors

Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Graph Coloring Example

- Consider the example RIG

 ![Graph](image)

- There is no coloring with less than 4 colors
- There are 4-colorings of this graph

Example Review

- a := b + c
- d := a
- e := d + f
- f := 2 * e
- b := d + e
- e := e - 1
- b := f + c
Example After Register Allocation

- Under this coloring the code becomes:

\[
\begin{align*}
 r_2 &:= r_3 + r_4 \\
 r_3 &:= r_2 \\
 r_4 &:= r_5 + r_6
\end{align*}
\]

\[
\begin{align*}
 r_1 &:= 2 * r_2 \\
 r_2 &:= r_3 + r_1
\end{align*}
\]

Computing Graph Colorings

- How do we compute graph colorings?

- It isn’t easy:
 1. This problem is very hard (NP-hard). No efficient algorithms are known.
 - Solution: use heuristics
 2. A coloring might not exist for a given number of registers
 - Solution: later

Graph Coloring Heuristic

- Observation:
 - Pick a node \(t \) with fewer than \(k \) neighbors in RIG
 - Eliminate \(t \) and its edges from RIG
 - If resulting graph is \(k \)-colorable, then so is the original graph

- Why?
 - Let \(c_1, ..., c_n \) be the colors assigned to the neighbors of \(t \) in the reduced graph
 - Since \(n < k \) we can pick some color for \(t \) that is different from those of its neighbors

Graph Coloring Example (1)

- Start with the RIG and \(k = 4 \):

\[
\begin{align*}
 \text{Stack: (a)}
\end{align*}
\]

- Remove \(a \)

Graph Coloring Example (2)

- Stack: (a)

- Remove \(d \)
Graph Coloring Example (3)

- Note: all nodes now have fewer than 4 neighbors

```
Stack: {d, a}
```

- Remove c

Graph Coloring Example (4)

```
Stack: {c, d, a}
```

- Remove b

Graph Coloring Example (5)

```
Stack: {b, c, d, a}
```

- Remove e

Graph Coloring Example (6)

```
Stack: {e, b, c, d, a}
```

- Remove f

Graph Coloring Example (7)

- Now start assigning colors to nodes, starting with the top of the stack

```
Stack: {f, e, b, c, d, a}
```

Graph Coloring Example (8)

```
Stack: {e, b, c, d, a}
```
Graph Coloring Example (9)

Stack: \{b, c, d, a\}

• e must be in a different register from f

Graph Coloring Example (10)

Stack: \{c, d, a\}

Graph Coloring Example (11)

Stack: \{d, a\}

• d can be in the same register as b

Graph Coloring Example (12)

Stack: \{a\}

What if the Heuristic Fails?

• What if all nodes have k or more neighbors?

Example: Try to find a 3-coloring of the RIG:

--

What if the Heuristic Fails?

• What if all nodes have k or more neighbors?

Example: Try to find a 3-coloring of the RIG:
What if the Heuristic Fails?

• Remove a and get stuck (as shown below)

• Pick a node as a candidate for spilling
 - A spilled temporary "lives" in memory
 - Assume that f is picked as a candidate

What if the Heuristic Fails?

• Remove f and continue the simplification
 - Simplification now succeeds: b, d, e, c

Eventually we must assign a color to f

We hope that among the 4 neighbors of f we use less than 3 colors ⇒ optimistic coloring

Spilling

• If optimistic coloring fails, we spill f
 - Allocate a memory location for f
 - Typically in the current stack frame
 - Call this address fa

 • Before each operation that reads f, insert
 $f := \text{load } fa$

 • After each operation that writes f, insert
 $\text{store } f, fa$

Spilling Example

• This is the new code after spilling f

A Problem

• This code reuses the register name f
 - Correct, but suboptimal
 - Should use distinct register names whenever possible
 - Allows different uses to have different colors
Spilling Example

• This is the new code after spilling f

```
a := b + c
d := -a
f1 := load fa
e := d + f1
f2 := 2 * e
store f2, fa
f3 := load fa
b := f3 + c
```

Recomputing Liveness Information

• The new liveness information after spilling:

```
a := b + c
d := -a
f1 := load fa
e := d + f1
f2 := 2 * e
store f2, fa
b := d + e
e := e - 1
f3 := load fa
b := f3 + c
{b}
{c, e}
{b}
{c, f}
{c, f}
{b, c, e, f}
{c, d, e, f}
{b, c, f}
{c, d, f}
{a, c, f}
{c, d, f1}
{c, f2}
{c, f3}
```

Recompute RIG After Spilling

• Some edges of the spilled node are removed
• In our case f still interferes only with c and d
• And the resulting RIG is 3-colorable

Caches

• Compilers are very good at managing registers
 - Much better than a programmer could be
• Compilers are not good at managing caches
 - This problem is still left to programmers
 - It is still an open question how much a compiler can do to improve cache performance
• Compilers can, and a few do, perform some cache optimizations
Cache Optimization

- Consider the loop

  ```
  for(j := 1; j < 10; j++)
  for(i=1; i<1000; i++)
  a[i] *= b[i]
  ```

- This program has terrible cache performance
 - Why?

Cache Optimization (Cont.)

- Consider the program:

  ```
  for(i=1; i<1000; i++)
  for(j := 1; j < 10; j++)
  a[i] *= b[i]
  ```

 - Computes the same thing
 - But with much better cache behavior
 - Might actually be more than 10x faster

- A compiler can perform this optimization
 - called loop interchange

Conclusions

- Register allocation is a “must have” in compilers:
 - Because intermediate code uses too many temporaries
 - Because it makes a big difference in performance

- Register allocation is more complicated for CISC machines