
CS143 Midterm
Spring 2022

� Please read all instructions (including these) carefully.

� There are 5 questions on the exam, some with multiple parts. You have 90 minutes to
work on the exam.

� The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason other than to
access the class webpage.

� Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

� Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary. Partial solutions will be graded
for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points

1 10
2 25
3 15
4 25
5 25

TOTAL 100

1. Regular Grammars

In class, we discussed how a CFG can be more expressive than a regular expression. However,
a subset of CFGs we will call the regular grammars (RGs) have exactly the same expressive
power as regular expressions.

A regular grammar is a CFG with any number of nonterminals in which every production
follows one of three forms:

� A → ε

� A → a

� A → aB

where a lowercase letter is a single terminal. Note that we allow the case where B = A.

For alphabet Σ = {a, b, c, d}, define an RG that is equivalent to the regular expression

(a|c)(dbb∗)∗

Answer: (your answer may use at most 5 non-terminal symbols)

S → a A

| c A

A → ε

| d B

B → b A

| b B

2. Context-Free Grammars

Given the following two CFGs over the alphabet Σ = {a, b, c}, what is the most restrictive
language that can describe them among the following:

LR(0) ⊂ SLR(1) ⊂ Unambiguous CFGs ⊂ All CFGs.

For each CFG, explain why it cannot be expressed in the next more restrictive language. If
the grammar is LR(0) then no explanation is needed.

(a) A → a | BaB | C
B → b | A
C → c | BcB

Answer:

All CFGs. The grammar can not be described by an unambiguous CFG, because the
grammar is ambiguous. Since C can be replaced by BcB, then A can go to either BaB
or BcB. Given a string “BaBcB”, there are two possible trees: one ‘a’ lower in the
tree and one with ‘c’ lower in the tree.

(b) A → aaC | C
B → bB | a
C → c | B
Answer:

The CFG is SLR(1). It is not in LR(0) because there is a shift-reduce conflict, which
can be resolved in SLR(1) since Follow(B) = {$} does not contain ‘a’.

S’ -> .A
A -> .aaC
A -> .C
C -> .c
C -> .B
B -> .bB
B -> .a

S -> A.

A A -> a.aC
B -> a.

A -> C.

C -> c.

C -> B.

B -> b.B
B -> .bB
B -> .a

A -> aa.C
C -> .c
C -> .B
B -> .bB
B -> .a

a
a

C

c

B
b

b

A -> C.C

B -> a.

b

a

c

B

C -> B.

B

shift-reduce conflict under LR(0)

3. Syntax-Directed Translation

Consider a non-standard binary number system where the value of each binary number b is
defined as the alternating sum of the decimal numbers that non-zero binary digits represent
from right to left. For example, val(ε) = 0, val(100) = 22 = 4, val(100010) = 21−25 = −30,
and val(1100001) = 20 − 25 + 26 = 33.

Given the following grammar for a non-standard binary numbers b, add semantic actions
that computes val(b). You must use the following attributes only: int val and int tmp.
Use Bison syntax: $i.val refers to the val attribute of the ith symbol of the production
and $$.val refers to the val attribute of the production’s result. You should not use any
global variables or any attributes other than val and tmp.

S → T

| ε

T → 0T

| 1T

| 0

| 1

Answer:

S -> T {

$$.val = $1.val;

}

S -> ε {

$$.val = 0;

}

T -> 0T {

$$.tmp = $2.tmp * 2;

$$.val = $2.val;

}

T -> 1T {

$$.tmp = $2.tmp * (-2);

$$.val = $2.val + $$.tmp;

}

T -> 0 {

$$.tmp = -1;

$$.val = 0;

}

T -> 1 {

$$.tmp = 1;

$$.val = 1;

}

4. First and Follow Sets

We have lost our CFG, but luckily we have the First sets and all of the First/Follow rela-
tionships. Construct a grammar that is consistent with the following information:

Each nonterminal has exactly two productions.

First(A) = {a, b}
First(B) = {a, b}
First(D) = {d, ε}

First(B)− {ε} ⊆ Follow(a)

d ∈ Follow(B)

Follow(A) ⊆ Follow(d)

First(D)− {ε} ⊆ Follow(B)

Follow(A) ⊆ Follow(D)

Follow(A) ⊆ Follow(B)

First(D)− {ε} ⊆ Follow(b)

Follow(B) ⊆ Follow(D)

Follow(B) ⊆ Follow(b)

Follow(B) ⊆ Follow(a)

Follow(D) ⊆ Follow(d)

Answer:

A → aBd | BD

B → bD | a
D → d | ε

Note: some variations here are possible. E.g., instead of A → aBd, you could have A → aB.

5. Bottom-Up Parsing

Each of the following two subproblems describe a deterministic (i.e., DFA) LR(0) parsing
automaton. Show your grammar and fill in the parsing automaton with transitions and
each state labeled with its set of LR(0) items. You do not need to analyze the automaton
to determine whether the grammar is LR(0) or SLR(1). The grammar and the automaton
constitute a complete answer to each subproblem.

Assume that the first step of the automaton construction is to add a new production S ′ → S
to the grammar, as described in class. This production should be included in your grammars,
in your automatons, and in your counts.

Give the simplest possible grammar (fewest productions and fewest terminals) that result in
a parsing automaton satisfying the description.

(a) An automaton (and corresponding CFG) with two states and one transition from the
start state to the second state.

Answer:

A → ε

S ′ → .A

A → .
S ′ → A.

A

(b) An automaton (and corresponding CFG) with a minimal number of states, without
loops, where one state has two incoming transitions.

Answer:

A → BB

B → b

S ′ → .A

A → .BB

B → .b

S ′ → A.

A → B.B

B → .b
A → BB.

B → b.

A

B

b

B

b

(Note: We accepted any solution with at most 7 states as close enough to minimal.)

