
CS143 Midterm
Spring 2023

• Please read all instructions (including these) carefully.

• There are 5 questions on the exam, some with multiple parts. You have 90 minutes to
work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason other than to
access the class webpage.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary. Partial solutions will be graded
for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 15
2 15
3 20
4 25
5 25

TOTAL 100

1. Regular Languages

(a) Construct a regex that recognizes binary numbers (Σ = {0, 1}) that are divisible by 2n

for a given n. You may use the shorthand 0n or 1n to respectively represent a sequence
of n 0’s or 1’s. You may consider the empty string ε as equivalent to 0 and the answer
may have leading zeros.

Answer:
(0|1)∗0n | 0∗ or (0|1)∗0n | 0+ (depending on whether you chose to consider ε as valid)

(b) Construct an NFA that recognizes strings in the alphabet Σ = {1, 2, 3}, where adding
the digits together results in a number that is a multiple of 2. That is, “11” and “222”
are valid strings, but not “23”. The empty string epsilon is included in the language.

Answer:

1, 3

1, 3

2 2

2. Semantic Actions

Consider the set of base-3 numbers over the digits Σ = {0, 1, 2}. Give a syntax directed
translation (a set of CFG productions and associated semantic actions) that assigns to the
root of your parse tree an attribute equal to the base-10 representation of the input string.
For example, “201” should evaluate to 2 × 32 + 0 × 3 + 1 = 19. The empty string ε should
not be included in your grammar. You should not use global variables.

Answer:

S -> 0 { $$ = 0; }
| 1 { $$ = 1; }
| 2 { $$ = 2; }
| S0 { $$ = $1 * 3; }
| S1 { $$ = $1 * 3 + 1; }
| S2 { $$ = $1 * 3 + 2; }

3. Context-Free Grammars

Give Context-Free Grammars (CFGs) that generate the following languages.

(a) {w ∈ (a|b)∗ | the length of w is odd and the middle symbol is a}.

Answer:

S → a

| aSa

| aSb

| bSa

| bSb

(b) {ai bj ck | i, j, k ≥ 0 and i + j = k} over the alphabet Σ = {a, b, c}, where ai means i
repetitions of a and where a0 = ε.

Answer:

S → aSc

| T

T → bTc

| ε

4. Top-Down Parsing

Consider the following CFG over the language Σ = {a, b, (,),−, 0, 1}:

S → aR(V | b(Q
Q→ bV 1 | RQ | 0)−
V → 0V |)−
R→ aR | 1

(a) Construct the LL(1) parsing table for this grammar.

Answer:

a b () { 0 1

S aR(V b(Q

Q RQ bV 1 0)− RQ

V)− 0V

R aR 1

(b) Is this grammar LL(1)? Explain why or why not.

Answer:
Yes. Each cell in the parsing table has at most one item.

(c) Show the sequence of stack, input, and actions that occur during an LL(1) parse
of the string “a1(a11)−”. The acceptable actions are: “out <production>”, “match
<terminal>”, “accept”, and “error”. The stack and input portions of the first line of
the table are filled out for you.

Answer:

Stack Input Action
S $ a1(a11)- out S → aR(V

aR(V $ a1(a11)- match a
R(V $ 1(a11)- out R → 1
1(V $ 1(a11)- match 1
(V $ (a11)- match (
V $ a11)- error

(d) Is this string in the context-free language described by this grammar? Explain why or
why not.

Answer: No. The parser cannot match the string “a11)-” as V, because the entry
[V,a] in the parsing table is empty.

5. Bottom-Up Parsing

Consider the following grammar G over the alphabet {1,−, ∗}:

Production Production Number

S ′ → S 1
S → N ∗N 2
S → N ∗ P 3
N → −P 4
P → 1P 5
P → 1 6

You want to use an SLR(1) parser to parse strings defined by G. Notice that each production
in G is associated with a production number.

(a) Provide the DFA edges and nodes of the LR(0) machine. A partial LR(0) DFA has
already been provided. Specifically, you will need to write in missing node (state)
labels, draw in missing edges (arrows). and complete all missing edge labels (for both
provided and drawn-in edges).

S ′

State 0

S ′ → .S

S → .N ∗N

S → .N ∗ P

N → .− P

State 4
S ′ → S.

State 1

S → N. ∗ P

S → N. ∗N

State 5

N → −.P

P → .1
P → .1P

State 2

S → N ∗ .P

S → N ∗ .N

N → .− P

P → .1P

P → .1

State 6
P → 1.P

P → 1.

P → .1P

P → .1

State 3

S → N ∗ P.

State 7

S → N ∗N.

State 9

P → 1P.

State 8

N → −P.

N

S

−

∗

1

P

−

1

P

N

1

P

(b) Fill in the SLR(1) parser table. The parser table includes both the action and goto
tables. The follow sets of the nonterminal symbols are S, N, P .

FOLLOW(S) = {$}
FOLLOW(N) = {∗, $}
FOLLOW(P) = {∗, $}

Each action table cell should only include si (shift), rj (reduce), or accept (accept),
where i is a state number and j is a production number. Empty action table cells
indicate error states. For instance, an acceptable action table entry would be s1. Each
goto table cell should either contain a single state number or be empty. Solutions that
do not follow this notation will not receive full credit.

state action goto

1 − ∗ $ S ′ S N P

0 s5 4 1

1 s2

2 s6 s5 7 3

3 r3

4 accept

5 s6 8

6 s6 r6 r6 9

7 r2

8 r4 r4

9 r5 r5

