Lecture 14: Joins!
Announcements: Two Hints

• You may want to do *Trigger activity* for project 2.
 • We’ve noticed those who do it have less trouble with project!
 • Seems like we’re good here 😊 Exciting for us!

• We posted an activity for you to do on your own... it may overlap heavily with a ps #3 problem... (*this is not necessary but helpful*).
 • The solutions will **not** be posted.

• Sorry the Google lecture was not recorded! Last minute thing...
1. Nested Loop Joins
What you will learn about in this section

1. RECAP: Joins

2. Nested Loop Join (NLJ)

3. Block Nested Loop Join (BNLJ)

4. Index Nested Loop Join (INLJ)
RECAP: Joins
Joins: Example

Example:

Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

\[
\begin{align*}
\text{SELECT} & \quad R.A, B, C, D \\
\text{FROM} & \quad R, S \\
\text{WHERE} & \quad R.A = S.A
\end{align*}
\]
Joins: Example

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

\[
\begin{align*}
\text{R} \bowtie \text{S} \\
\text{R:} & \quad A \quad B \quad C \\
& \quad 1 \quad 0 \quad 1 \\
& \quad 2 \quad 3 \quad 4 \\
& \quad 2 \quad 5 \quad 2 \\
& \quad 3 \quad 1 \quad 1 \\
\text{S:} & \quad A \quad D \\
& \quad 3 \quad 7 \\
& \quad 2 \quad 2 \\
& \quad 2 \quad 3 \\
\end{align*}
\]
Joins: Example

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

Example:

\[
\begin{align*}
\text{SELECT } & R.A, B, C, D \\
\text{FROM } & R, S \\
\text{WHERE } & R.A = S.A
\end{align*}
\]
Joins: Example

Example:

Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

<table>
<thead>
<tr>
<th>R</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

\[R \bowtie S \]

\[
\text{SELECT } R.A, B, C, D \\
\text{FROM } R, S \\
\text{WHERE } R.A = S.A
\]
Joins: Example

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

```
SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A
```
Semantically: A Subset of the Cross Product

\[R \bowtie S \]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

SELECT \(R.A, B, C, D \)

FROM \(R, S \)

WHERE \(R.A = S.A \)

Can we actually implement a join in this way?
Notes

• We write $R \bowtie S$ to mean join R and S by returning all tuple pairs where all shared attributes are equal.

• We write $R \bowtie S$ on A to mean join R and S by returning all tuple pairs where attribute(s) A are equal.

• For simplicity, we’ll consider joins on two tables and with equality constraints ("equijoins") however joins can merge > 2 tables, and some algorithms do support non-equality constraints!
Nested Loop Joins
Notes

• We are again considering “IO aware” algorithms: *care about disk IO*

• Given a relation R, let:
 • $T(R) = \# \text{ of tuples in } R$
 • $P(R) = \# \text{ of pages in } R$

• Note also that we omit ceilings in calculations... good exercise to put back in!
Nested Loop Join (NLJ)

Compute \(R \bowtie S \) on \(A \):

\[
\text{for } r \text{ in } R: \\
\quad \text{for } s \text{ in } S: \\
\quad \quad \text{if } r[A] == s[A]: \\
\quad \quad \quad \text{yield } (r,s)
\]
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

```
    for r in R:
        for s in S:
            if r[A] == s[A]:
                yield (r,s)
```

Cost:

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r,s)

Cost:

$P(R) + T(R) \times P(S)$

1. Loop over the tuples in R

2. For every tuple in R, loop over all the tuples in S

Have to read all of S from disk for every tuple in R!
Nested Loop Join (NLJ)

Compute $R \bowtie S \text{ on } A$:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:

$P(R) + T(R) \times P(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the if statement!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:

$$P(R) + T(R) \cdot P(S) + OUT$$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions
4. Write out (to page, then when page full, to disk)

What would OUT be if our join condition is trivial ($if\ TRUE$)?

OUT could be bigger than $P(R) \cdot P(S) ...$ but usually not that bad
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:
for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r, s)

Cost:
$P(R) + T(R) \cdot P(S) + OUT$

What if R (“outer”) and S (“inner”) switched?

$P(S) + T(S) \cdot P(R) + OUT$

Outer vs. inner selection makes a huge difference—DBMS needs to know which relation is smaller!
IO-Aware Approach
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each B-1 pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$
 yield (r,s)

Given $B+1$ pages of memory

Cost:

$P(R)$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we’re reading in multiple pages sequentially however we’ll ignore this here!
Block Nested Loop Join (BNLJ)

Compute \(R \bowtie S \) on \(A \):

for each B-1 pages \(pr \) of \(R \):
 for page \(ps \) of \(S \):
 for each tuple \(r \) in \(pr \):
 for each tuple \(s \) in \(ps \):
 if \(r[A] == s[A] \):
 yield (\(r, s \))

Cost:

\[P(R) + \frac{P(R)}{B-1} P(S) \]

1. Load in B-1 pages of \(R \) at a time (leaving 1 page each free for \(S \) & output)

2. For each (B-1)-page segment of \(R \), load each page of \(S \)

Given \(B+1 \) pages of memory

Note: Faster to iterate over the smaller relation first!
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each B-1 pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r,s)

Cost:

$$P(R) + \frac{P(R)}{B-1} P(S)$$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
2. For each (B-1)-page segment of R, load each page of S
3. Check against the join conditions

BNLJ can also handle non-equality constraints

Given $B+1$ pages of memory
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each $B-1$ pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r,s)

Given $B+1$ pages of memory

Cost:

$P(R) + \frac{P(R)}{B-1} P(S) + OUT$

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)

2. For each $(B-1)$-page segment of R, load each page of S

3. Check against the join conditions

4. Write out

Again, OUT could be bigger than $P(R)*P(S)$... but usually not that bad
BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
 - We only read all of S from disk for every (B-1)-page segment of R!
 - Still the full cross-product, but more done only in memory

\[
P(R) + \frac{T(R) \times P(S)}{P(R)} + \text{OUT}
\]

BNLJ is faster by roughly \((B-1)\frac{T(R)}{P(R)}\)!
BNLJ vs. NLJ: Benefits of IO Aware

• Example:
 • R: 500 pages
 • S: 1000 pages
 • 100 tuples / page
 • We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~ 140 hours

• BNLJ: Cost = 500 + 500*1000/10 = 50 Thousand IOs ~ 0.14 hours

A very real difference from a small change in the algorithm!
Smarter than Cross-Products
Smarter than Cross-Products: From Quadratic to Nearly Linear

• All joins that compute the full cross-product have some quadratic term
 • For example we saw:

 NLJ: \(P(R) + T(R)P(S) + \text{OUT} \)

 BNLJ: \(P(R) + \frac{P(R)}{B-1} P(S) + \text{OUT} \)

• Now we’ll see some (nearly) linear joins:
 • \(\sim O(P(R) + P(S) + \text{OUT}) \), where again OUT could be quadratic but is usually better

We get this gain by taking advantage of structure—moving to equality constraints (“equijoin”) only!
Index Nested Loop Join (INLJ)

Compute $R \bowtie S$ on A:
Given index idx on $S.A$:
for r in R:
 s in $idx(r[A])$:
 yield r,s

Cost:
$P(R) + T(R) * L + OUT$

where L is the IO cost to access all the distinct values in the index; assuming these fit on one page, $L \sim 3$ is good est.

→ We can use an index (e.g. B+ Tree) to avoid doing the full cross-product!
Joins: A Cage Match

Message: It’s all about the memory!
Today’s Lecture

1. Sort-Merge Join (SMJ)

2. Hash Join (HJ)

3. The Cage Match: SMJ vs. HJ
1. Sort-Merge Join (SMJ)
What you will learn about in this section

1. Sort-Merge Join

2. “Backup” & Total Cost

3. Optimizations

4. ACTIVITY: Sequential Flooding
Sort Merge Join (SMJ): Basic Procedure

To compute $R \bowtie S$ on A:

1. Sort R, S on A using **external merge sort**

2. **Scan** sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that if R, S are already sorted on A, SMJ will be awesome!

Note that we are only considering equality join conditions here
SMJ Example: \(R \bowtie S \) on \(A \) with 3 page buffer

- For simplicity: Let each page be \textit{one tuple}, and let the first value be \(A \)

We show the file HEAD, which is the next value to be read!
SMJ Example: \(R \bowtie S \) on \(A \) with 3 page buffer

1. Sort the relations \(R, S \) on the join key (first value)
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!

![Diagram showing disk, main memory, and buffer with data sets and join output]
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer

Output

$(0,a)$ $(0,j)$ $(0,a,j)$

$(0,a)$ $(3,j)$ $(5,b)$

$(0,j)$ $(3,g)$ $(7,f)$

$(0,j)$ $(0,a)$ $(0,a,j)$
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Done!
What happens with duplicate join keys?
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...

![Diagram showing disk, buffer, and main memory with tuples (0,a), (0,j), (0,b), (0,g), and (7,f).]
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...

Have to “backup” in the scan of S and read tuple we’ve already read!
Backup

• At best, no backup \(\rightarrow\) scan takes \(P(R) + P(S)\) reads
 • For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take \(P(R) \times P(S)\) reads!
 • For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 • Roughly: For each page of R, we’ll have to back up and read each page of S...

• Often not that bad however, plus we can:
 • Leave more data in buffer (for larger buffers)
 • Can “zig-zag” (see animation)
SMJ: Total cost

• Cost of SMJ is **cost of sorting** R and S...

• Plus the **cost of scanning**: \(\sim P(R) + P(S) \)
 • Because of **backup**: in worst case \(P(R) \times P(S) \); but this would be very unlikely

• Plus the **cost of writing out**: \(\sim P(R) + P(S) \) but in worst case \(T(R) \times T(S) \)

\[
\sim \text{Sort}(P(R)) + \text{Sort}(P(S)) + P(R) + P(S) + \text{OUT}
\]

Recall: \(\text{Sort}(N) \approx 2N(\lceil \log_B N/2(B+1) \rceil + 1) \)

*Note: this is using repacking, where we estimate that we can create initial runs of length \(\sim 2(B+1) \)
SMJ vs. BNLJ: Steel Cage Match

- If we have 100 buffer pages, \(P(R) = 1000 \) pages and \(P(S) = 500 \) pages:
 - Sort both in two passes: \(2 \times 2 \times 1000 + 2 \times 2 \times 500 = 6,000 \) IOs
 - Merge phase \(1000 + 500 = 1,500 \) IOs
 - \(= 7,500 \) IOs + OUT

What is BNLJ?
- \(500 + 1000 \times \lceil \frac{500}{98} \rceil = 6,500 \) IOs + OUT

- But, if we have 35 buffer pages?
 - Sort Merge has same behavior (still 2 passes)
 - BNLJ? \(15,500 \) IOs + OUT!

SMJ is ~ linear vs. BNLJ is quadratic...
But it’s all about the memory.
A Simple Optimization: Merges Merged!

• SMJ is composed of a *sort phase* and a *merge phase*

• During the *sort phase*, run passes of external merge sort on R and S
 • Suppose at some point, R and S have \(\leq B \) (sorted) runs in total

 • We could do two merges (for each of R & S) at this point, complete the sort phase, and start the merge phase...

 • OR, we could combine them: do one B-way merge and complete the join!
Un-Optimized SMJ

Sort Phase
(Ext. Merge Sort)

Split & sort

Split & sort

Merge

Merge

Merge

Merge / Join Phase

Unsorted input relations

Given $B+1$ buffer pages

Joined output file created!
Simple SMJ Optimization

Sort Phase (Ext. Merge Sort)

Unsorted input relations

Merge / Join Phase

Given $B+1$ buffer pages

<= B total runs

B-Way Merge/Join

Joined output file created!
Simple SMJ Optimization

• Now, on this last pass, we only do \(P(R) + P(S) \) IOs to complete the join!

• If we can initially split \(R \) and \(S \) into \(B \) total runs each of length approx. \(\leq 2(B+1) \), assuming repacking lets us create initial runs of \(\sim 2(B+1) \) then we only need \(3(P(R) + P(S)) + \text{OUT} \) for SMJ!
 • 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!

• How much memory for this to happen?
 • \(P(R) + P(S) / B \leq 2(B+1) \Rightarrow \sim P(R) + P(S) \leq 2B^2 \)
 • Thus, \(\max\{P(R), P(S)\} \leq B^2 \) is an approximate sufficient condition

If the larger of \(R, S \) has \(\leq B^2 \) pages, then SMJ costs \(3(P(R) + P(S)) + \text{OUT} \)!
Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
 • SMJ is basically linear.
 • Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort both relations
 • If max \{ P(R), P(S) \} < B^2 then cost is 3(P(R)+P(S)) + OUT
4. Hash Join (HJ)
What you will learn about in this section

1. Hash Join
2. Memory requirements
Recall: Hashing

• **Magic of hashing:**
 - A hash function h_B maps into $[0,B-1]$
 - And maps nearly uniformly

• A hash **collision** is when $x \neq y$ but $h_B(x) = h_B(y)$
 - Note however that it will **never** occur that $x = y$ but $h_B(x) \neq h_B(y)$

• We hash on an attribute A, so our has function is $h_B(t)$ has the form $h_B(t.A)$.
 - **Collisions** may be more frequent.
Recall: Mad Hash Collisions

Say something here to justify this slide’s existence? [TODO]
Hash Join: High-level procedure

To compute $R \bowtie S$ on A:

1. **Partition Phase:** Using one (shared) hash function h_B, partition R and S into B buckets

2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for h, and join these
 1. Use BNLJ here; or hash again \rightarrow either way, operating on small partitions so fast!

We *decompose* the problem using h_B, then complete the join.
Hash Join: High-level procedure

1. **Partition Phase:** Using one (shared) hash function h_B, partition R and S into B buckets

Disk

```
R
(0,a)  (0,a)
(0,j)  (3,j)
(3,b)

S
(0,a)  (5,b)
(0,j)  (5,b)
```

```
Disk

R
(0,a)  (0,a)
(3,j)  (0,j)
(3,b)  (5,b)

S
(0,a)  (0,j)
(0,j)  (5,b)
```

Note our new convention: pages each have two tuples (one per row)

More detail in a second...
Hash Join: High-level procedure

2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for h_B, and join these
Hash Join: High-level procedure

2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for h_B, and join these.
Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into **buckets** such that if
\(h_B(t.A) = h_B(t'.A) \) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:

- We use B buffer pages for output (one for each bucket), and 1 for input
 - The “dual” of sorting.
 - For each tuple \(t \) in input, copy to buffer page for \(h_B(t.A) \)
 - When page fills up, flush to disk.
How big are the resulting buckets?

• Given **N input pages**, we partition into **B buckets**:
 • \(\rightarrow \) Ideally our buckets are each of size \(\sim \frac{N}{B} \) pages

• What happens if there are **hash collisions**?
 • Buckets could be \(> \frac{N}{B} \)
 • **We’ll do several passes**…

• What happens if there are **duplicate join keys**?
 • Nothing we can do here… could have some **skew** in size of the buckets
How big do we want the resulting buckets?

• Ideally, our buckets would be of size $\leq B-1$ pages
 • 1 for input page, 1 for output page, $B-1$ for each bucket

• Recall: If we want to join a bucket from R and one from S, we can do BNLJ in linear time if for one of them (wlog say R), $P(R) \leq B-1$!
 • And more generally, being able to fit bucket in memory is advantageous

• We can keep partitioning buckets that are $> B-1$ pages, until they are $\leq B-1$ pages
 • Using a new hash key which will split them...
Hash Join Phase 1: Partitioning

We partition into $B = 2$ buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input).

For simplicity, we’ll look at partitioning one of the two relations- we just do the same for the other relation!

Recall: our goal will be to get $B = 2$ buckets of size $\leq B-1 \rightarrow 1$ page each.
1. We read pages from R into the “input” page of the buffer...

Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

2. Then we use hash function h_2 to sort into the buckets, which each have one page in the buffer.

Given $B+1 = 3$ buffer pages

Disk

Main Memory

Input page

Output (bucket) pages

$(0, a)$
$(3, a)$
$(0, a)$

$(5, b)$
$(5, a)$
$(3, j)$
$(0, j)$
Hash Join Phase 1: Partitioning

2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer.

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B + 1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B+1 = 3$ buffer pages
3. We repeat until the buffer bucket pages are full...

Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

Diagram:
- **Disk:**
 - R
 - $(5,b)$
 - $(0,j)$
 - $(5,a)$

- **Main Memory:**
 - Buffer:
 - $(0,j)$
 - $(0,a)$
 - $(3,a)$
 - $(3,j)$
 - $h_2(0) = 0$

- **Input page:**
 - 0
 - 1

- **Output (bucket) pages**
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full... then flush to disk

Given \(B+1 = 3 \) buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full... then flush to disk

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Note that collisions can occur!

Given $B + 1 = 3$ buffer pages

Collision!!!

Main Memory

$$h_2(5) = h_2(3) = 1$$

Input page

Output (bucket) pages
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

- **Input page 0:**
 - $(0,a)$
 - $(0,j)$
 - $(5,b)$

- **Output (bucket) pages:**
 - $(0,j)$
 - $(5,a)$

- **Main Memory:** $h_2(0) = 0$
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

Collision!!
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

```
Input page  0  1
Output (bucket) pages
```

```
Disk
R
B0
(0,a) (0,j)
(3,a) (3,j)
B1

Main Memory
Buffer
(0,j) (5,a) (5,b)
```
Hash Join Phase 1: Partitioning

We wanted buckets of size $B-1 = 1$... however we got larger ones due to:

(1) Duplicate join keys

(2) Hash collisions
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$h'_2(3) \neq h'_2(5)$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

What about duplicate join keys? Unfortunately this is a problem... but usually not a huge one.

We call this unevenness in the bucket size skew
Now that we have partitioned R and S...
Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!
Hash Join Phase 2: Matching

• Note that since \(x = y \rightarrow h(x) = h(y) \), we only need to consider pairs of buckets (one from \(R \), one from \(S \)) that have the same hash function value.

• If our buckets are \(\sim B-1 \) pages, can join each such pair using BNLJ \textit{in linear time}; recall (with \(P(R) = B-1 \)):

\[
\text{BNLJ Cost: } P(R) + \frac{P(R)P(S)}{B-1} = P(R) + \frac{(B-1)P(S)}{B-1} = P(R) + P(S)
\]

Joining the pairs of buckets is linear! (As long as smaller bucket \(\leq B-1 \) pages)
Hash Join Phase 2: Matching

R.A hashed values

S.A hashed values

R⋈S on A
Hash Join Phase 2: Matching

To perform the join, we ideally just need to explore the dark blue regions

= the tuples with same values of the join key A
Hash Join Phase 2: Matching

With a join algorithm like BNLJ that doesn’t take advantage of equijoin structure, we’d have to explore this whole grid!
Hash Join Phase 2: Matching

With HJ, we only explore the blue regions = the tuples with same values of \(h(A) \)!

We can apply BNLJ to each of these regions.
Hash Join Phase 2: Matching

An alternative to applying BNLJ:

We could also hash again, and keep doing passes in memory to reduce further!
How much memory do we need for HJ?

• Given B+1 buffer pages

+ WLOG: Assume $P(R) \leq P(S)$

• Suppose (reasonably) that we can partition into B buckets in 2 passes:
 • For R, we get B buckets of size $\sim P(R)/B$
 • To join these buckets in linear time, we need these buckets to fit in B-1 pages, so we have:

$$B-1 \geq \frac{P(R)}{B} \Rightarrow B^{\uparrow 2} \geq P(R)$$

Quadratic relationship between smaller relation’s size & memory!
Hash Join Summary

• Given enough buffer pages as on previous slide...

 • **Partitioning** requires reading + writing each page of R,S
 • → 2(P(R)+P(S)) IOs

 • **Matching** (with BNLJ) requires reading each page of R,S
 • → P(R) + P(S) IOs

 • **Writing out results** could be as bad as P(R)*P(S)... but probably closer to P(R)+P(S)

HJ takes \(\sim 3(P(R)+P(S)) + OUT\) IOs!
3. The Cage Match
Sort-Merge v. Hash Join

- Given enough memory, both SMJ and HJ have performance:
 \[\sim 3(P(R) + P(S)) + OUT \]

- "Enough" memory =
 - SMJ: \(B^2 > \max\{P(R), P(S)\}\)
 - HJ: \(B^2 > \min\{P(R), P(S)\}\)

Hash Join superior if relation sizes differ greatly. Why?
Further Comparisons of Hash and Sort Joins

- Hash Joins are highly parallelizable.

- Sort-Merge less sensitive to data skew and result is sorted
Summary

• Saw IO-aware join algorithms
 • Massive difference

• Memory sizes key in hash versus sort join
 • Hash Join = Little dog (depends on smaller relation)

• Skew is also a major factor