1 Possibly Useful Information

- **Canonical SQL Statement:**

  ```sql
  SELECT <attributes>
  FROM <tables>
  WHERE <conditions>
  GROUP BY <attributes>
  HAVING <conditions>
  ```

- **Functional Dependency (FD):** For a relation \(R \), and sets of attributes \(X \) and \(Y \), the functional dependency \(X \rightarrow Y \) holds if for any \(t_1, t_2 \in R \), \(t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y] \).

- **Armstrong’s Axioms:** Let the \(A_i \)s, \(B_j \)s, and \(C_k \)s be attributes:

 1. *Split/Combine:* If \(A_1, ..., A_n \rightarrow B_j \) for \(j = 1, ..., m \), then this is equivalent to \(A_1, ..., A_n \rightarrow B_1, ..., B_m \) and vice-versa
 2. *Reduction/Trivial:* \(A_1, ..., A_n \rightarrow A_i \) for any \(i = 1, ..., n \)
 3. *Transitive Closure:* If \(A_1, ..., A_n \rightarrow B_1, ..., B_m \) and \(B_1, ..., B_m \rightarrow C_1, ..., C_p \) then \(A_1, ..., A_n \rightarrow C_1, ..., C_p \)

- **Closure:** Given a set of attributes \(X \) and a set of FDs \(F \), the closure \(X^+ \) is the set of all attributes \(y \) such that \(X \rightarrow y \).

- **Superkey:** Given a relation \(R \), a superkey is a set of attributes \(X \) such that \(X^+ \) is equal to the full set of attributes of \(R \).

- **Key:** A key is a minimal superkey, i.e. a superkey where no subset of it is also a superkey.

- **Boyce-Codd Normal Form (BCNF):** A relation \(R \) is in BCNF if for all sets of attributes \(X \), either \(X^+ = X \) (\(X \) is trivial) or \(X^+ = X \) the set of all attributes (\(X \) is a superkey).

- **Conflicts:** Two actions conflict if they are part of different TXNs, involve the same variable, and at least one of them is a write.

- **Serializable:** A schedule is serializable if it is equivalent to some serial ordering.

- **Multi-Value Dependency (MVD):** Given a relation \(R \) with a set of attributes \(A \), two sets of attributes \(X, Y \subseteq A \), we say that the MVD \(X \rightarrow Y \) holds if for any tuples \(t_1, t_2 \in R \) such that \(t_1[X] = t_2[X] \), there is a tuple \(t_3 \) such that:

 - \(t_3[X] = t_1[X] \)
 - \(t_3[Y] = t_1[Y] \)
 - \(t_3[A \setminus Y] = t_2[A \setminus Y] \)

- **ER Diagrams:**

 - Entities are contained in rectangles
 - Attributes are contained in circles
 - Relationships are contained in diamonds
 - Primary Key Attributes are underlined
 - Relationships with at most one instance of an entity connect with arrows
 - Relationships with at least one instance of an entity connect with bold lines