Relational Algebra Practice- *Solutions*

November 23, 2015

Since we didn’t get to cover relational algebra (RA) on a problem set, we’re providing this notebook so you can get some practice in before the final exam. Solutions will be posted in a separate notebook- try doing these on your own first, then take a look at the solutions to check your understanding!

In particular, you should understand:

- How to go from SQL query → RA expression
- How to go from RA expression → SQL query
- How to optimize an RA expression by commuting operators

Note that some of the problems here will be slightly more involved than what would be on the exam!

Consider relations $R(A,B)$, $S(B,C)$, $T(C,D)$ and $U(D,E)$ for the below examples.

1 SQL → RA

Let’s go through some examples where we’ll translate SQL to Relational Algebra. For each of the below queries, translate them from SQL into RA.

1.1

```sql
SELECT DISTINCT * 
FROM R 
WHERE R.A = 2;
```

$\sigma_{A=2}(R(A,B))$

1.2

```sql
SELECT DISTINCT S.B 
FROM S 
WHERE S.C = 4;
```

$\Pi_B(\sigma_{C=4}(S(B,C)))$

1.3

```sql
SELECT DISTINCT R.A, S.C 
FROM R, S 
WHERE R.B = S.B;
```

$\Pi_{A,C}(\bowtie_B (R(A,B)) \bowtie_B (S(B,C)))$
1.4

\[\text{SELECT DISTINCT } R.A, T.D \]
\[\text{FROM } R, S, T \]
\[\text{WHERE } R.B = S.B \text{ AND } S.C = T.C \text{ AND } R.A = 2 \text{ AND } S.B = 0; \]
\[\Pi_{A,D}(((\sigma_{A=2}(R(A,B))) \times_B (\sigma_{B=0}(S(B,C)))) \times_C (T(C,D))) \]

1.5

\[\text{SELECT DISTINCT } R.A \]
\[\text{FROM } R \]
\[\text{WHERE } R.B = 0 \text{ OR } R.B = 2; \]
\[\Pi_A((\sigma_{B=0}(R(A,B))) \cup (\sigma_{B=2}(R(A,B)))) \]

1.6

\[\text{SELECT DISTINCT } R.A \]
\[\text{FROM } R \]
\[\text{WHERE } R.B <> 2; \]
\[\Pi_A((R(A,B)) - (\sigma_{B=2}(R(A,B)))) \]

1.7

\[\text{SELECT DISTINCT } R.B, U.E \]
\[\text{FROM } R, S, T, U \]
\[\text{WHERE } R.B = S.B \text{ AND } S.C = T.C \text{ AND } T.D = U.D \]
\[\text{AND } (S.C = 2 \text{ OR } T.D = 4) \text{ AND } U.D <> 2; \]
\[\Pi_{B,E}((R(A,B)) \times_B (((\sigma_{C=2}(S(B,C))) \times_C (T(C,D))) \cup ((S(B,C)) \times_C (\sigma_{D=4}(T(C,D)))) \times_D ((U(D,E)) - (\sigma_{D=2}(U(D,E)))))) \]

2 RA → SQL

Now we’ll go through some examples where we’ll translate Relational Algebra to SQL

2.1

\[\sigma_{B=0}(\Pi_B(S(B,C))) \]

\[\text{SELECT DISTINCT } S.B \]
\[\text{FROM } S \]
\[\text{WHERE } S.B = 0; \]

2.2

\[\Pi_{A,E}(\sigma_{A=2}(\sigma_{C=0}(R(A,B) \times_B (S(B,C) \times_C (T(C,D) \times_D U(D,E))))) \]

\[\text{SELECT DISTINCT } R.A, U.E \]
\[\text{FROM } R, S, T, U \]
\[\text{WHERE } R.B = S.B \text{ AND } S.C = T.C \text{ AND } T.D = U.D \]
\[\text{AND } S.C = 0 \text{ and } R.A = 2; \]
2.3
\[\Pi_{A,C}(((\sigma_{B=0}(R(A,B))) \bowtie_B (S(B,C) \bowtie_C (\sigma_{C=0}(T(C,D))))) \]

SELECT DISTINCT R.A, T.C
FROM R, S, T
WHERE R.B = S.B AND S.C = T.C
AND T.C = 0 AND R.B = 0;

2.4
\[((\sigma_{A=2}(R(A,B))) \cup (\sigma_{A=4}(R(A,B)))) \bowtie_B ((\sigma_{C=2}(S(B,C))) - (\sigma_{B=1}(S(B,C)))) \]

SELECT DISTINCT R.A, R.B, S.C
FROM R, S
WHERE R.B = S.B AND (R.A = 2 OR R.A = 4) AND S.C = 2 AND S.B <> 1;

3 Optimization of RA Expressions

In this section, we’ll optimize RA expressions, i.e. reduce the total IO cost of executing them.

3.1
\[\Pi_D(T(C,D) \bowtie_D U(D,E)) \]
\[(\Pi_D(T(C,D))) \bowtie_D (\Pi_D(U(D,E))) \]

3.2
\[\sigma_{A=2}(\Pi_{A,C}(R(A,B) \bowtie_B S(B,C))) \]
\[\Pi_{A,C}(((\sigma_{A=2}(R(A,B))) \bowtie_B (S(B,C))) \]

3.3
\[\sigma_{C=0}(\Pi_{A,C}(\sigma_{B=0}(((R(A,B)) \bowtie_B (S(B,C))) \bowtie_C (T(C,D))))) \]
\[\Pi_{A,C}(((\Pi_{A,C}(\sigma_{C=0}(((\sigma_{B=0}(R(A,B)) \bowtie_B (\sigma_{B=0}(S(B,C)))))) \bowtie_C (\sigma_{C=0}(T(C,D))))))) \]

3.4
\[\sigma_{C=0}(\Pi_C(\sigma_{D=2}(\sigma_{A=3}(((R(A,B)) \bowtie_B (S(B,C)) \bowtie_C (T(C,D)))))))) \]
\[(\Pi_C(((\sigma_{A=3}(R(A,B))) \bowtie_B (\sigma_{C=0}(S(B,C)))) \bowtie_C (\Pi_C(\sigma_{C=0}(\sigma_{D=2}(T(C,D))))))) \]