Lecture 14: Joins!
Announcements: Two Hints

• You may want to do *Trigger activity* for project 2.
 • We’ve noticed those who do it have less trouble with project!
 • Seems like we’re good here 😊 Exciting for us!

• We posted an activity for you to do on your own... it may overlap heavily with a ps #3 problem... *(this is not necessary but helpful).*
 • The solutions will *not* be posted.

• Sorry the Google lecture was not recorded! Last minute thing...
1. Nested Loop Joins
What you will learn about in this section

1. RECAP: Joins

2. Nested Loop Join (NLJ)

3. Block Nested Loop Join (BNLJ)

4. Index Nested Loop Join (INLJ)
RECAP: Joins
Joins: Example

\[R \bowtie S \]

SELECT \(R.A, B, C, D \)

FROM \(R, S \)

WHERE \(R.A = S.A \)

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)
Joins: Example

\(R \bowtie S \)

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

```
SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A
```
Joins: Example

\[R \bowtie S \]

SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)
Joins: Example

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

\[
\begin{align*}
R \bowtie S & \quad \text{SELECT} \quad R.A, B, C, D \\
\text{FROM} \quad R, S \\
\text{WHERE} \quad R.A = S.A
\end{align*}
\]
Joins: Example

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r.A = s.A$

```
SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A
```

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>R × S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Semantically: A Subset of the Cross Product

$$R \times S$$

Example: Returns all pairs of tuples $r \in R$, $s \in S$ such that $r.A = s.A$

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Cross Product

Filter by conditions $(r.A = s.A)$

Can we actually implement a join in this way?
Notes

• We write $R \bowtie S$ to mean join R and S by returning all tuple pairs where all shared attributes are equal.

• We write $R \bowtie S$ on A to mean join R and S by returning all tuple pairs where attribute(s) A are equal.

• For simplicity, we’ll consider joins on two tables and with equality constraints (“equijoins”).

However joins can merge > 2 tables, and some algorithms do support non-equality constraints!
Nested Loop Joins
Notes

• We are again considering “IO aware” algorithms: *care about disk IO*

• Given a relation R, let:
 • \(T(R) = \# \) of tuples in R
 • \(P(R) = \# \) of pages in R

• Note also that we omit ceilings in calculations... good exercise to put back in!

Recall that we read / write entire pages with disk IO
Nested Loop Join (NLJ)

Compute \(R \bowtie S \) on \(A \):

```
for r in R:
    for s in S:
        if r[A] == s[A]:
            yield (r, s)
```
Nested Loop Join (NLJ)

Compute \(R \bowtie S \) on \(A \):

\[
\text{for } r \text{ in } R:
\quad \text{for } s \text{ in } S:
\quad \quad \text{if } r[A] = s[A]:
\quad \quad \quad \text{yield } (r,s)
\]

Cost:

\[P(R) \]

1. Loop over the tuples in \(R \)

Note that our IO cost is based on the number of \textbf{pages} loaded, not the number of tuples!
Nested Loop Join (NLJ)

Compute \(R \bowtie S \text{ on } A \):

\[
\text{for } r \text{ in } R:\n \quad \text{for } s \text{ in } S:\n \quad \text{if } r[A] == s[A]:
 \quad \quad \text{yield } (r,s)
\]

Cost:
\[P(R) + T(R) \times P(S)\]

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S

Have to read **all of S** from disk for **every tuple in R**!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the if statement!

Cost:

$P(R) + T(R) \times P(S)$
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

\[
\begin{align*}
\text{for } r \text{ in } R: \\
\text{for } s \text{ in } S: \\
\quad \text{if } r[A] == s[A]: \\
\quad \quad \text{yield } (r,s)
\end{align*}
\]

Cost:

\[P(R) + T(R)*P(S) + \text{OUT}\]

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions

What would OUT be if our join condition is trivial (if TRUE)?

OUT could be bigger than $P(R)*P(S)$... but usually not that bad

4. Write out (to page, then when page full, to disk)
Nested Loop Join (NLJ)

Compute \(R \bowtie S \) on \(A \):

\[
\begin{align*}
&\text{for } r \text{ in } R: \\
&\hspace{1em}\text{for } s \text{ in } S: \\
&\hspace{2em}\text{if } r[A] == s[A]: \\
&\hspace{3em}\text{yield } (r,s)
\end{align*}
\]

Cost:

\[
P(R) + T(R) \cdot P(S) + \text{OUT}
\]

What if \(R \) ("outer") and \(S \) ("inner") switched?

\[
P(S) + T(S) \cdot P(R) + \text{OUT}
\]

Outer vs. inner selection makes a huge difference-DBMS needs to know which relation is smaller!
IO-Aware Approach
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each $B-1$ pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r, s)

Cost:

$P(R)$

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we’re reading in multiple pages sequentially however we’ll ignore this here!

Given $B+1$ pages of memory
Block Nested Loop Join (BNLJ)

Compute R \bowtie S on A:
for each B-1 pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r,s)

Given $B+1$ pages of memory

Cost:
$$P(R) + \frac{P(R)}{B-1} P(S)$$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

2. For each (B-1)-page segment of R, load each page of S

Note: Faster to iterate over the smaller relation first!
Block Nested Loop Join (BNLJ)

Given $B+1$ pages of memory

Cost:

$$P(R) + \frac{P(R)}{B-1} P(S)$$

1. Load in $B-1$ pages of R at a time (leaving 1 page each free for S & output)

2. For each $(B-1)$-page segment of R, load each page of S

3. Check against the join conditions

BNLJ can also handle non-equality constraints

Compute $R \bowtie S$ on A:

for each $B-1$ pages pr of R:
 for page ps of S:
 for each tuple r in pr:
 for each tuple s in ps:
 if $r[A] == s[A]$:
 yield (r,s)
Block Nested Loop Join (BNLJ)

Given **B+1** pages of memory

Cost:

\[P(R) + \frac{P(R)}{B-1} P(S) + OUT \]

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
2. For each (B-1)-page segment of R, load each page of S
3. Check against the join conditions
4. Write out

Again, **OUT** could be bigger than \(P(R) \times P(S) \)... but usually not that bad
BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
 - We only read all of S from disk for every (B-1)-page segment of R!
 - Still the full cross-product, but more done only in memory

\[
\text{NLJ: } P(R) + T(R) \times P(S) + \text{OUT}
\]

\[
\text{BNLJ: } P(R) + \frac{P(R)}{B-1} P(S) + \text{OUT}
\]

BNLJ is faster by roughly \(\frac{(B-1)T(R)}{P(R)} \)!
BNLJ vs. NLJ: Benefits of IO Aware

• Example:
 • R: 500 pages
 • S: 1000 pages
 • 100 tuples / page
 • We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + $50,000 \times 1000 = 50$ Million IOs ≈ 140 hours

• BNLJ: Cost = $500 + \frac{500 \times 1000}{10} = 50$ Thousand IOs ≈ 0.14 hours

A very real difference from a small change in the algorithm!
Smarter than Cross-Products
Smarter than Cross-Products: From Quadratic to Nearly Linear

- All joins that compute the full cross-product have some quadratic term
 - For example we saw:

\[
P(R) + T(R)P(S) + \text{OUT}
\]

- Now we’ll see some (nearly) linear joins:
 - \(\sim O(P(R) + P(S) + \text{OUT}) \), where again \(\text{OUT} \) could be quadratic but is usually better

We get this gain by taking advantage of structure—moving to equality constraints (“equijoin”) only!
Index Nested Loop Join (INLJ)

Compute $R \bowtie S$ on A:
Given index idx on $S.A$:
for r in R:
 s in $idx(r[A])$:
yield r,s

Cost:

$$P(R) + T(R) \times L + \text{OUT}$$

where L is the IO cost to access all the distinct values in the index; assuming these fit on one page, $L \sim 3$ is good est.

→ We can use an index (e.g. B+ Tree) to avoid doing the full cross-product!
Joins: A Cage Match

Message: It’s all about the memory!
Today’s Lecture

1. Sort-Merge Join (SMJ)

2. Hash Join (HJ)

3. The Cage Match: SMJ vs. HJ
1. Sort-Merge Join (SMJ)
What you will learn about in this section

1. Sort-Merge Join

2. “Backup” & Total Cost

3. Optimizations

4. ACTIVITY: Sequential Flooding
Sort Merge Join (SMJ): Basic Procedure

To compute \(R \bowtie S \) on \(A \):

1. Sort \(R, S \) on \(A \) using \textit{external merge sort}

2. \textit{Scan} sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that we are only considering equality join conditions here

Note that if \(R, S \) are already sorted on \(A \), SMJ will be awesome!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

• For simplicity: Let each page be *one tuple*, and let the first value be A

We show the file HEAD, which is the next value to be read!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

1. Sort the relations R, S on the join key (first value)
SMJ Example: \(R \bowtie S \) on \(A \) with 3 page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!

[Diagram showing disk with tuples (0,a), (3,j), (5,b) and (0,j), (3,g), (7,f) and an arrow indicating the output (0,a), (0,j), (0,a,j) in main memory buffer.]
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Scan and “merge” on join key!

- Disk
 - R: $(0,a)$ (3,j) (5,b)
 - S: $(0,j)$ (3,g) (7,f)
- Output: $(0,a,j)$

- Main Memory
 - Buffer: $(3,j,g)$
SMJ Example: $R \bowtie S$ on A with 3 page buffer

2. Done!

Diagram

- **Disk**
 - R: $(0,a)$, $(3,j)$, $(5,b)$
 - S: $(0,j)$, $(3,g)$, $(7,f)$
 - Output: $(0,a,j)$, $(3,j,g)$

- **Main Memory**
 - Buffer: Empty Pages

What happens with duplicate join keys?
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge...

Have to “backup” in the scan of S and read tuple we’ve already read!
Backup

• At best, no backup \rightarrow scan takes $P(R) + P(S)$ reads
 • For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take $P(R) \times P(S)$ reads!
 • For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 • Roughly: For each page of R, we’ll have to back up and read each page of S...

• Often not that bad however, plus we can:
 • Leave more data in buffer (for larger buffers)
 • Can “zig-zag” (see animation)
SMJ: Total cost

• Cost of SMJ is **cost of sorting** R and S...

• Plus the **cost of scanning**: \(\sim P(R) + P(S)\)
 • Because of *backup*: in worst case \(P(R) * P(S)\); but this would be very unlikely

• Plus the **cost of writing out**: \(\sim P(R) + P(S)\) but in worst case \(T(R) * T(S)\)

\[\sim \text{Sort}(P(R)) + \text{Sort}(P(S)) + P(R) + P(S) + \text{OUT}\]

Recall: \(\text{Sort}(N) \approx 2N \left(\left\lfloor \log_B \frac{N}{2(B+1)} \right\rfloor + 1 \right)\)

Note: this is using repacking, where we estimate that we can create initial runs of length \(\sim 2(B+1)\)
SMJ vs. BNLJ: Steel Cage Match

• If we have 100 buffer pages, \(P(R) = 1000 \) pages and \(P(S) = 500 \) pages:
 • Sort both in two passes: \(2 \times 2 \times 1000 + 2 \times 2 \times 500 = 6,000 \text{ IOs} \)
 • Merge phase \(1000 + 500 = 1,500 \text{ IOs} \)
 • \(= 7,500 \text{ IOs} + \text{OUT} \)

What is BNLJ?

• \(500 + 1000 \times \left\lfloor \frac{500}{98} \right\rfloor = 6,500 \text{ IOs} + \text{OUT} \)

• But, if we have 35 buffer pages?
 • Sort Merge has same behavior (still 2 passes)
 • BNLJ? \(15,500 \text{ IOs} + \text{OUT}! \)

SMJ is \(\sim \) linear vs. BNLJ is quadratic...
But it’s all about the memory.
A Simple Optimization: Merges Merged!

- SMJ is composed of a **sort phase** and a **merge phase**

- During the **sort phase**, run passes of external merge sort on R and S
 - Suppose at some point, R and S have $\leq B$ (sorted) runs in total
 - We could do two merges (for each of R & S) at this point, complete the sort phase, and start the merge phase...
 - OR, we could combine them: do **one** B-way merge and complete the join!

Given $B+1$ buffer pages
Un-Optimized SMJ

Sort Phase
(Ext. Merge Sort)

Unsorted input relations

Merge / Join Phase

Given $B+1$ buffer pages

Joined output file created!
Simple SMJ Optimization

Sort Phase
(Ext. Merge Sort)

Split & sort
Merge

<= B total runs

Unsorted input relations

Split & sort
Merge

B-Way Merge / Join

Merge / Join Phase

Given \(B+1 \) buffer pages

Unsorted input relations

Joined output file created!
Simple SMJ Optimization

• Now, on this last pass, we only do $P(R) + P(S)$ IOs to complete the join!

• If we can initially split R and S into B total runs each of length approx. $\leq 2(B+1)$, assuming repacking lets us create initial runs of $\sim 2(B+1)$- then we only need $3(P(R) + P(S)) + OUT$ for SMJ!
 • 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!

• How much memory for this to happen?
 • $\frac{P(R)+P(S)}{B} \leq 2(B + 1) \Rightarrow \sim P(R) + P(S) \leq 2B^2$
 • Thus, $\max\{P(R), P(S)\} \leq B^2$ is an approximate sufficient condition

Given $B+1$ buffer pages

If the larger of R,S has $\leq B^2$ pages, then SMJ costs $3(P(R)+P(S)) + OUT$!
Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
 • SMJ is basically linear.
 • Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort both relations
 • If max \{ P(R), P(S) \} < B^2 then cost is 3(P(R)+P(S)) + OUT
4. Hash Join (HJ)
What you will learn about in this section

1. Hash Join

2. Memory requirements
Recall: Hashing

- **Magic of hashing:**
 - A hash function h_B maps into $[0, B-1]$
 - And maps nearly uniformly

- A hash collision is when $x \neq y$ but $h_B(x) = h_B(y)$
 - Note however that it will *never* occur that $x = y$ but $h_B(x) \neq h_B(y)$

- We hash on an attribute A, so our has function is $h_B(t)$ has the form $h_B(t.A)$.
 - **Collisions** may be more frequent.
Recall: Mad Hash Collisions

Say something here to justify this slide’s existence? [TODO]
Hash Join: High-level procedure

To compute \(R \bowtie S \) on \(A \):

1. **Partition Phase:** Using one (shared) hash function \(h_B \), partition \(R \) and \(S \) into \(B \) buckets

2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for \(h \), and join these
 1. Use BNLJ here; or hash again \(\rightarrow \) either way, operating on small partitions so fast!

We *decompose* the problem using \(h_B \), then complete the join.
Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function h_B, partition R and S into B buckets

R

(0,a) (3,j) (3,b)

(0,a) (0,j) (5,b)

S

(0,a) (0,j) (5,b)

Disk

Disk

Note our new convention: pages each have two tuples (one per row)

More detail in a second...
Hash Join: High-level procedure

2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_B, and join these
Hash Join: High-level procedure

2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_B, and join these

Don’t have to join the others! E.g. (S_1 and R_2)!
Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into **buckets** such that if
\(h_B(t.A) = h_B(t'.A) \) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:

- We use B buffer pages for output (one for each bucket), and 1 for input
 - The “dual” of sorting.
 - For each tuple \(t \) in input, copy to buffer page for \(h_B(t.A) \)
 - When page fills up, flush to disk.
How big are the resulting buckets?

• Given **N input pages, we partition into B buckets:**
 • → Ideally our buckets are each of size ~ N/B pages

• What happens if there are **hash collisions**?
 • Buckets could be > N/B
 • We’ll do several passes...

• What happens if there are **duplicate join keys**?
 • Nothing we can do here... could have some **skew** in size of the buckets
How big do we want the resulting buckets?

- Ideally, our buckets would be of size $\leq B - 1$ pages
 - 1 for input page, 1 for output page, $B-1$ for each bucket

- Recall: If we want to join a bucket from R and one from S, we can do BNLJ in linear time if for one of them (wlog say R), $P(R) \leq B - 1$!
 - And more generally, being able to fit bucket in memory is advantageous

- We can keep partitioning buckets that are > B-1 pages, until they are $\leq B - 1$ pages
 - Using a new hash key which will split them...

Given $B+1$ buffer pages

Recall for BNLJ: $P(R) + \frac{P(R)P(S)}{B - 1}$

We’ll call each of these a “pass” again...
Hash Join Phase 1: Partitioning

We partition into $B = 2$ buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input).

For simplicity, we’ll look at partitioning one of the two relations - we just do the same for the other relation!

Recall: our goal will be to get $B = 2$ buckets of size $\leq B-1 \rightarrow 1$ page each.

Given $B+1 = 3$ buffer pages.
Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

2. Then we use hash function h_2 to sort into the buckets, which each have one page in the buffer.

Given $B+1 = 3$ buffer pages.
Hash Join Phase 1: Partitioning

2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer.

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full... then flush to disk
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full... then flush to disk

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Note that collisions can occur!

Given $B+1 = 3$ buffer pages

Collision!!!
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

Finish this pass...

Disk

R

B0

B1

(5, b)

(0, a)

(0, j)

(3, a)

(3, j)

Main Memory

h₂(0) = 0

Buffer

(0, j)

(0, j)

(5, a)

Input page

0

1

Output (bucket) pages
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

Collision!!!
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

We wanted buckets of size $B-1 = 1$...

however we got larger ones due to:

(1) Duplicate join keys

(2) Hash collisions
Hash Join Phase 1: Partitioning

Given $B + 1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

What about duplicate join keys? Unfortunately this is a problem... but usually not a huge one.

We call this unevenness in the bucket size **skew**
Now that we have partitioned R and $S...
Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!
Hash Join Phase 2: Matching

• Note that since \(x = y \rightarrow h(x) = h(y) \), we only need to consider pairs of buckets (one from \(R \), one from \(S \)) that have the same hash function value.

• If our buckets are \(\sim B - 1 \) pages, can join each such pair using BNLJ in linear time; recall (with \(P(R) = B - 1 \)):

\[
\text{BNLJ Cost: } P(R) + \frac{P(R)P(S)}{B-1} = P(R) + \frac{(B-1)P(S)}{B-1} = P(R) + P(S)
\]

Joining the pairs of buckets is linear!
(As long as smaller bucket \(\leq B-1 \) pages)
Hash Join Phase 2: Matching

\[R \bowtie S \text{ on } A \]
Hash Join Phase 2: Matching

To perform the join, we ideally just need to explore the dark blue regions

= the tuples with same values of the join key A
Hash Join Phase 2: Matching

With a join algorithm like BNLJ that doesn’t take advantage of equijoin structure, we’d have to explore this *whole grid!*
Hash Join Phase 2: Matching

$\text{R} \bowtie \text{S on } A$

With HJ, we only explore the blue regions

$= \text{the tuples with same values of } h(A)!$

We can apply BNLJ to each of these regions
Hash Join Phase 2: Matching

R \bowtie S \text{ on } A

An alternative to applying BNLJ:
We could also hash again, and keep doing passes in memory to reduce further!
How much memory do we need for HJ?

- Given \(B+1\) buffer pages

- Suppose (reasonably) that we can partition into \(B\) buckets in 2 passes:
 - For \(R\), we get \(B\) buckets of size \(\sim P(R)/B\)
 - To join these buckets in linear time, we need these buckets to fit in \(B-1\) pages, so we have:

\[
B - 1 \geq \frac{P(R)}{B} \implies \sim B^2 \geq P(R)
\]

+ WLOG: Assume \(P(R) \leq P(S)\)

Quadratic relationship between smaller relation’s size & memory!
Hash Join Summary

- *Given enough buffer pages as on previous slide...*
 - **Partitioning** requires reading + writing each page of R,S
 - $\rightarrow \ 2(P(R)+P(S))$ IOs
 - **Matching** (with BNLJ) requires reading each page of R,S
 - $\rightarrow P(R) + P(S)$ IOs
 - **Writing out results** could be as bad as $P(R)P(S)\ldots$ but probably closer to $P(R)+P(S)$

HJ takes $\sim 3(P(R)+P(S)) + OUT$ IOs!
3. The Cage Match
Sort-Merge v. Hash Join

- **Given enough memory**, both SMJ and HJ have performance:
 \[
 \sim 3(P(R) + P(S)) + \text{OUT}
 \]
- “Enough” memory =
 - SMJ: \(B^2 > \max\{P(R), P(S)\}\)
 - HJ: \(B^2 > \min\{P(R), P(S)\}\)

Hash Join superior if relation sizes *differ greatly*. Why?
Further Comparisons of Hash and Sort Joins

- Hash Joins are highly parallelizable.

- Sort-Merge less sensitive to data skew and result is sorted
Summary

• Saw IO-aware join algorithms
 • Massive difference

• Memory sizes key in hash versus sort join
 • Hash Join = Little dog (depends on smaller relation)

• Skew is also a major factor