Lectures 5 & 6: Design Theory
Lecture 5: Design Theory I
Today’s Lecture

1. Normal forms & functional dependencies
 - ACTIVITY: Finding FDs

2. Finding functional dependencies

3. Closures, superkeys & keys
 - ACTIVITY: The key or a key?
1. Normal forms & functional dependencies
What you will learn about in this section

1. Overview of design theory & normal forms
2. Data anomalies & constraints
3. Functional dependencies
4. ACTIVITY: Finding FDs
Design Theory

• Design theory is about how to represent your data to avoid anomalies.

• It is a mostly mechanical process
 • Tools can carry out routine portions

• We have a notebook implementing all algorithms!
 • We’ll play with it in the activities!
Normal Forms

- **1st Normal Form (1NF)** = All tables are flat
- **2nd Normal Form** = disused
- **Boyce-Codd Normal Form (BCNF)**
- **3rd Normal Form (3NF)**
- **4th and 5th Normal Forms** = see text books

DB designs based on functional dependencies, intended to prevent data anomalies.
1st Normal Form (1NF)

<table>
<thead>
<tr>
<th>Student</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>{CS145,CS229}</td>
</tr>
<tr>
<td>Joe</td>
<td>{CS145,CS106}</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Violates 1NF.

<table>
<thead>
<tr>
<th>Student</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
</tr>
<tr>
<td>Mary</td>
<td>CS229</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
</tr>
<tr>
<td>Joe</td>
<td>CS106</td>
</tr>
</tbody>
</table>

In 1st NF

1NF Constraint: Types must be atomic!
Data Anomalies & Constraints
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes *anomalies*:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

If every course is in only one room, contains *redundant* information!
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes *anomalies*:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>C12</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

If we update the room number for one tuple, we get inconsistent data = an *update anomaly*.
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

If everyone drops the class, we lose what room the class is in! = a delete anomaly
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

Similarly, we can’t reserve a room without students = an **insert** anomaly
Today: develop theory to understand why this design may be better and how to find this decomposition...
Functional Dependencies
Def: Let A, B be sets of attributes. We write $A \rightarrow B$ or say A **functionally determines** B if, for any tuples t_1 and t_2:

$$t_1[A] = t_2[A] \implies t_1[B] = t_2[B]$$

and we call $A \rightarrow B$ a **functional dependency**

A-\rightarrowB means that

“whenever two tuples agree on A then they agree on B.”
Defn (again): Given attribute sets $A=\{A_1, \ldots, A_m\}$ and $B = \{B_1, \ldots, B_n\}$ in R,

<table>
<thead>
<tr>
<th>A_1</th>
<th>\ldots</th>
<th>A_m</th>
<th>B_1</th>
<th>\ldots</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defn (again):
Given attribute sets $A=\{A_1, \ldots, A_m\}$ and
$B = \{B_1, \ldots, B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on
R holds if for *any* t_i, t_j in R:
A Picture Of FDs

Defn (again):
Given attribute sets $A=\{A_1,\ldots,A_m\}$ and $B = \{B_1,\ldots,B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

$$t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } \ldots \text{ AND } t_i[A_m] = t_j[A_m]$$

If t_1, t_2 agree here..
Defn (again):
Given attribute sets $A=\{A_1,...,A_m\}$ and $B = \{B_1,...,B_n\}$ in R,

The **functional dependency** $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

if $t_i[A_1] = t_j[A_1]$ AND $t_i[A_2] = t_j[A_2]$ AND ... AND $t_i[A_m] = t_j[A_m]

then $t_i[B_1] = t_j[B_1]$ AND $t_i[B_2] = t_j[B_2]$ AND ... AND $t_i[B_n] = t_j[B_n]$
FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
 1. One which minimizes the possibility of anomalies
Functional Dependencies as Constraints

A **functional dependency** is a form of constraint

- **Holds** on some instances (but not others) – can check whether there are violations
- Part of the schema, helps define a **valid** instance

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

Note: The FD \{Course\} -> \{Room\} **holds on this instance**

Recall: an **instance** of a schema is a multiset of tuples conforming to that schema, i.e. a **table**
Functional Dependencies as Constraints

Note that:

- You can check if an FD is **violated** by examining a single instance;

- However, you **cannot prove** that an FD is part of the schema by examining a single instance.
 - *This would require checking every valid instance*

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

However, cannot *prove* that the FD \{Course\} -> \{Room\} is *part of the schema*
More Examples

An FD is a constraint which **holds**, or **does not hold** on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>
More Examples

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

\{Position\} \rightarrow \{Phone\}
More Examples

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

but not \{Phone\} \rightarrow \{Position\}
ACTIVITY

Find at least *three* FDs which are violated on this instance:

```
{ } → { }
{ } → { }
{ } → { }
```
2. Finding functional dependencies
What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition

2. Finding FDs

3. Closures

4. ACTIVITY: Compute the closures
“Good” vs. “Bad” FDs

We can start to develop a notion of **good** vs. **bad** FDs:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Intuitively:

EmpID -> Name, Phone, Position is “good FD”
- **Minimal redundancy, less possibility of anomalies**
“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Intuitively:

- EmpID -> Name, Phone, Position is “good FD”
- But Position -> Phone is a “bad FD”
 - Redundancy!
 - Possibility of data anomalies
“Good” vs. “Bad” FDs

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones”.

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

Returning to our original example... can you see how the “bad FD” {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- ...

Lecture 5 > Section 2 > Good vs. Bad FDs
FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

 This part can be tricky!

3. Use these to design a better schema
 1. One which minimizes possibility of anomalies
Finding Functional Dependencies

• There can be a very large number of FDs...
 • How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all instances...
 • How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?
Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, $F = \{f_1, \ldots, f_n\}$, does an FD g hold?

Inference problem: How do we decide?
Finding Functional Dependencies

Example:

<table>
<thead>
<tr>
<th>Products</th>
<th>Name</th>
<th>Color</th>
<th>Category</th>
<th>Dep</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gizmo</td>
<td>Green</td>
<td>Gadget</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Widget</td>
<td>Black</td>
<td>Gadget</td>
<td>Toys</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Gizmo</td>
<td>Green</td>
<td>Whatsit</td>
<td>Garden</td>
<td>99</td>
</tr>
</tbody>
</table>

Given the provided FDs, we can see that \{Name, Category\} → {Price} must also hold on any instance...

Provided FDs:

1. {Name} → {Color}
2. {Category} → {Department}
3. {Color, Category} → {Price}

Which / how many other FDs do?!?
Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, \(F = \{f_1, \ldots, f_n\} \), does an FD \(g \) hold?

Inference problem: How do we decide?

Answer: Three simple rules called **Armstrong’s Rules.**

1. Split/Combine,
2. Reduction, and
3. Transitivity... *ideas by picture*
1. Split/Combine

\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \]
1. Split/Combine

\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \]

... is equivalent to the following \(n \) FDs...

\[A_1, \ldots, A_m \rightarrow B_i \text{ for } i=1, \ldots, n \]
1. Split/Combine

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>...</th>
<th>Aₘ</th>
<th></th>
<th>B₁</th>
<th>...</th>
<th>Bₙ</th>
</tr>
</thead>
</table>

And vice-versa, $A₁,...,Aₘ \rightarrow Bᵢ$ for $i=1,...,n$

... is equivalent to ...

$A₁, ..., Aₘ \rightarrow B₁,...,Bₙ$
Reduction/Trivial

\[
\begin{array}{ccc}
A_1 & \ldots & A_m \\
\end{array}
\]

\[
A_1, \ldots, A_m \rightarrow A_j \text{ for any } j=1,\ldots,m
\]
3. Transitive Closure

\[
\begin{array}{cccccc}
A_1 & \ldots & A_m & B_1 & \ldots & B_n \\
\hline
\end{array}
\]

\[
A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \text{ and } \\
B_1, \ldots, B_n \rightarrow C_1, \ldots, C_k
\]
3. Transitive Closure

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>...</th>
<th>Aₘ</th>
<th>B₁</th>
<th>...</th>
<th>Bₙ</th>
<th>C₁</th>
<th>...</th>
<th>Cₖ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

A₁, ..., Aₘ → B₁,..., Bₙ and B₁,..., Bₙ → C₁,..., Cₖ

implies

A₁,..., Aₘ → C₁,..., Cₖ
Finding Functional Dependencies

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Color</th>
<th>Category</th>
<th>Dep</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Green</td>
<td>Gadget</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Widget</td>
<td>Black</td>
<td>Gadget</td>
<td>Toys</td>
<td>59</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Green</td>
<td>Whatsit</td>
<td>Garden</td>
<td>99</td>
</tr>
</tbody>
</table>

Provided FDs:
1. {Name} → {Color}
2. {Category} → {Department}
3. {Color, Category} → {Price}

Which / how many other FDs hold?
Finding Functional Dependencies

Example:

Inferred FDs:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Rule used</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. {Name, Category} \rightarrow {Name}</td>
<td>?</td>
</tr>
<tr>
<td>5. {Name, Category} \rightarrow {Color}</td>
<td>?</td>
</tr>
<tr>
<td>6. {Name, Category} \rightarrow {Category}</td>
<td>?</td>
</tr>
<tr>
<td>7. {Name, Category} \rightarrow {Color, Category}</td>
<td>?</td>
</tr>
<tr>
<td>8. {Name, Category} \rightarrow {Price}</td>
<td>?</td>
</tr>
</tbody>
</table>

Provided FDs:

1. \{Name\} \rightarrow \{Color\}
2. \{Category\} \rightarrow \{Dept.\}
3. \{Color, Category\} \rightarrow \{Price\}

Which / how many other FDs hold?
Finding Functional Dependencies

Example:

Inferred FDs:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Rule used</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. <code>{Name, Category} -> {Name}</code></td>
<td>Trivial</td>
</tr>
<tr>
<td>5. <code>{Name, Category} -> {Color}</code></td>
<td>Transitive (4 -> 1)</td>
</tr>
<tr>
<td>6. <code>{Name, Category} -> {Category}</code></td>
<td>Trivial</td>
</tr>
<tr>
<td>7. <code>{Name, Category} -> {Color, Category}</code></td>
<td>Split/combine (5 + 6)</td>
</tr>
<tr>
<td>8. <code>{Name, Category} -> {Price}</code></td>
<td>Transitive (7 -> 3)</td>
</tr>
</tbody>
</table>

Provided FDs:

1. `{Name} → {Color}`
2. `{Category} → {Dept.}`
3. `{Color, Category} → {Price}`

Can we find an algorithmic way to do this?
Closures
Closure of a set of Attributes

Given a set of attributes \(A_1, ..., A_n \) and a set of FDs \(F \):
Then the closure, \(\{A_1, ..., A_n\}^+ \) is the set of attributes \(B \) s.t. \(\{A_1, ..., A_n\} \rightarrow B \)

Example: \(F = \{ \{\text{name}\} \rightarrow \{\text{color}\}, \{\text{category}\} \rightarrow \{\text{department}\}, \{\text{color, category}\} \rightarrow \{\text{price}\} \} \)

Example Closures:
- \(\{\text{name}\}^+ = \{\text{name, color}\} \)
- \(\{\text{name, category}\}^+ = \{\text{name, category, color, dept, price}\} \)
- \(\{\text{color}\}^+ = \{\text{color}\} \)
Closure Algorithm

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F.

Repeat until X doesn’t change; do:

if $\{B_1, ..., B_n\} \rightarrow C$ is entailed by F

and $\{B_1, ..., B_n\} \subseteq X$

then add C to X.

Return X as X^+
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F.
Repeat until X doesn’t change; do:
 if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 then add C to X.
Return X as X^+

$F = \{\text{name} \rightarrow \text{color} \}
\{\text{category} \rightarrow \text{dept} \}
\{\text{color, category} \rightarrow \text{price} \}$

${\text{name, category}}^+ = \{\text{name, category} \}$
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F.
Repeat until X doesn’t change; do:
 - if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 - then add C to X.
Return X as X^+

\[
F = \{
\text{name} \rightarrow \{\text{color}\}, \\
\text{category} \rightarrow \{\text{dept}\}, \\
\text{color, category} \rightarrow \{\text{price}\}
\}
\]

\[
\{\text{name, category}\}^+ = \\
\{\text{name, category}\}
\]

\[
\{\text{name, category}\}^+ = \\
\{\text{name, category, color}\}
\]
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F

Repeat until X doesn’t change; do:

- if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 - then add C to X

Return X as X^+

$$F = \{
\{\text{name}\} \rightarrow \{\text{color}\}
, \{\text{category}\} \rightarrow \{\text{dept}\}
, \{\text{color, category}\} \rightarrow \{\text{price}\}\}$$

$\{\text{name, category}\}^+ = \{\text{name, category}\}$

$\{\text{name, category}\}^+ = \{\text{name, category, color}\}$

$\{\text{name, category}\}^+ = \{\text{name, category, color, dept}\}$
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F.
Repeat until X doesn’t change; do:
 if $\{B_1, \ldots, B_n\} \to C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 then add C to X.
Return X as X^+

\[
F = \begin{align*}
\{name\} & \to \{color\} \\
\{category\} & \to \{dept\} \\
\{color, category\} & \to \{price\}
\end{align*}
\]

\[
\{name, category\}^+ = \{name, category\}
\]

\[
\{name, category\}^+ = \{name, category, color\}
\]

\[
\{name, category\}^+ = \{name, category, color, dept\}
\]

\[
\{name, category\}^+ = \{name, category, color, dept, price\}
\]
Example

Compute \(R(A, B, C, D, E, F) \)

\[
\begin{align*}
\{A, B\} & \rightarrow \{C\} \\
\{A, D\} & \rightarrow \{E\} \\
\{B\} & \rightarrow \{D\} \\
\{A, F\} & \rightarrow \{B\}
\end{align*}
\]

Compute \(\{A, B\}^+ = \{A, B, \} \)

Compute \(\{A, F\}^+ = \{A, F, \} \)
Example

Compute \(\{A, B\}^+ = \{A, B, C, D\} \)

Compute \(\{A, F\}^+ = \{A, F, B\} \)
Example

Compute \(\{A,B\}^+ = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ = \{A, B, C, D, E, F\} \)
3. Closures, Superkeys & Keys
What you will learn about in this section

1. Closures Pt. II

2. Superkeys & Keys

3. ACTIVITY: The key or a key?
Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if $X \rightarrow A$
 1. Compute X^+
 2. Check if $A \subseteq X^+$

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Recall the **Split/combine** rule:

$X \rightarrow A_1, ..., X \rightarrow A_n$

implies

$X \rightarrow \{A_1, ..., A_n\}$
Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

- $\{A\}^+ = \{A\}$
- $\{B\}^+ = \{B, D\}$
- $\{C\}^+ = \{C\}$
- $\{D\}^+ = \{D\}$
- $\{A, B\}^+ = \{A, B, C, D\}$
- $\{A, C\}^+ = \{A, C\}$
- $\{A, D\}^+ = \{A, B, C, D\}$
- $\{A, B, C\}^+ = \{A, B, D\}^+ = \{A, C, D\}^+ = \{A, B, C, D\}$
- $\{B, C, D\}^+ = \{B, C, D\}$
- $\{A, B, C, D\}^+ = \{A, B, C, D\}$

Example:

Given $F =$

- $\{A, B\} \rightarrow C$
- $\{A, D\} \rightarrow B$
- $\{B\} \rightarrow D$

No need to compute all of these - why?
Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

$$
\begin{align*}
{A}^+ &= \{A\}, \quad {B}^+ = \{B, D\}, \quad {C}^+ = \{C\}, \quad {D}^+ = \{D\}, \quad {A, B}^+ = \{A, B, C, D\}, \quad {A, C}^+ = \{A, C\}, \\
{A, D}^+ &= \{A, B, C, D\}, \quad {A, B, C}^+ = \{A, B, D\}^+ = \{A, B, C, D\}, \\
{A, C, D}^+ &= \{A, B, C, D\}, \quad {B, C}^+ = \{B, C, D\}, \\
{A, B, C, D}^+ &= \{A, B, C, D\}
\end{align*}
$$

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

$$
\begin{align*}
{A, B} &\rightarrow \{C, D\}, \quad {A, D} \rightarrow \{B, C\}, \\
{A, B, C} &\rightarrow \{D\}, \quad {A, B, D} \rightarrow \{C\}, \\
{A, C, D} &\rightarrow \{B\}
\end{align*}
$$
Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

\[
\begin{align*}
{A}^+ &= \{A\}, \quad {B}^+ = \{B,D\}, \quad {C}^+ = \{C\}, \quad {D}^+ = \{D\}, \quad {A,B}^+ = \{A,B,C,D\}, \quad {A,C}^+ = \{A,C\}, \\
{A,D}^+ &= \{A,B,C,D\}, \quad {A,B,C}^+ = \{A,B,D\}^+ = \{A,B,C,D\}, \\
{A,C,D}^+ &= \{A,B,C,D\}, \quad {B,C,D}^+ = \{B,C,D\}, \\
{A,B,C,D}^+ &= \{A,B,C,D\}
\end{align*}
\]

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

\[
\begin{align*}
\{A,B\} &\rightarrow \{C,D\}, \quad \{A,D\} \rightarrow \{B,C\}, \\
\{A,B,C\} &\rightarrow \{D\}, \quad \{A,B,D\} \rightarrow \{C\}, \\
\{A,C,D\} &\rightarrow \{B\}
\end{align*}
\]
Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

$\{A,B\} \rightarrow \{C,D\}$, $\{A,D\} \rightarrow \{B,C\}$, $\{A,B,C\} \rightarrow \{D\}$, $\{A,B,D\} \rightarrow \{C\}$, $\{A,C,D\} \rightarrow \{B\}$

Example: Given $F =$

$\{A,B\} \rightarrow C$
$\{A,D\} \rightarrow B$
$\{B\} \rightarrow D$

The FD $X \rightarrow Y$ is non-trivial
Superkeys and Keys
Keys and Superkeys

A **superkey** is a set of attributes A_1, \ldots, A_n s.t. for any other attribute B in R, we have $\{A_1, \ldots, A_n\} \rightarrow B$

A **key** is a *minimal* superkey

I.e. all attributes are *functionally determined* by a superkey

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)
Finding Keys and Superkeys

• For each set of attributes X

1. Compute X^+

2. If $X^+ = \text{set of all attributes}$ then X is a superkey

3. If X is minimal, then it is a key
Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?
Example of Keys

\[
\text{Product}(\text{name, price, category, color})
\]

\[
\{\text{name, category}\} \rightarrow \text{price}
\{\text{category}\} \rightarrow \text{color}
\]

\[
\{\text{name, category}\}^+ = \{\text{name, price, category, color}\}
= \text{the set of all attributes}
\Rightarrow \text{this is a superkey}
\Rightarrow \text{this is a key, since neither name nor category alone is a superkey}
\]
Activity-5-1.ipynb
Lecture 6: Design Theory II
Today’s Lecture

1. Boyce-Codd Normal Form
 • ACTIVITY

2. Decompositions & 3NF
 • ACTIVITY

3. MVDs
 • ACTIVITY
1. Boyce-Codd Normal Form
What you will learn about in this section

1. Conceptual Design
2. Boyce-Codd Normal Form
3. The BCNF Decomposition Algorithm
4. ACTIVITY
Conceptual Design
Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables until no more bad FDs

3. When done, the database schema is normalized

Recall: there are several normal forms...
Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

 • $X \rightarrow A$ is a “good FD” if X is a (super)key
 • In other words, if A is the set of all attributes

 • $X \rightarrow A$ is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
Boyce-Codd Normal Form (BCNF)

• Why does this definition of “good” and “bad” FDs make sense?

• If X is not a (super)key, it functionally determines some of the attributes; therefore, those other attributes can be duplicated

 • Recall: this means there is redundancy
 • And redundancy like this can lead to data anomalies!

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>
Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if $\{A_1, ..., A_n\} \rightarrow B$ is a non-trivial FD in R
then $\{A_1, ..., A_n\}$ is a superkey for R

Equivalently: \forall sets of attributes X, either ($X^+ = X$) or ($X^+ = \text{all attributes}$)

In other words: there are no “bad” FDs
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

{SSN} → {Name, City}

This FD is *bad* because it is *not* a superkey

What is the key? {SSN, PhoneNumber}

⇒ **Not** in BCNF
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Madison</td>
</tr>
</tbody>
</table>

```
{SSN} \rightarrow \{\text{Name},\text{City}\}
```

This FD is now *good* because it is the key

<table>
<thead>
<tr>
<th>SSN</th>
<th>PhoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-45-6789</td>
<td>206-555-1234</td>
</tr>
<tr>
<td>123-45-6789</td>
<td>206-555-6543</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>908-555-2121</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>908-555-1234</td>
</tr>
</tbody>
</table>

Let’s check anomalies:

- Redundancy ?
- Update ?
- Delete ?

Now in BCNF!
BCNF Decomposition Algorithm

BCNFDcomp(R):

Find X such that:

$X + \neq X$ and $X + \neq \text{all attributes}$

if (not found) then

Return R

let $Y = X + - X$, $Z = (X +) C$

decompose R into $R_1(X \cap Y)$ and $R_2(X \cap Z)$

Return BCNFDcomp(R_1), BCNFDcomp(R_2)
BCNF Decomposition Algorithm

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq [all attributes]

Find a set of attributes X which has non-trivial “bad” FDs, i.e. is not a superkey, using closures
BCNF Decomposition Algorithm

BCNFDcomp(R):
Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq \{\text{all attributes}\}$

if (not found) then Return R

If no “bad” FDs found, in BCNF!
BCNF Decomposition Algorithm

BCNFDcomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq \{\text{all attributes}\}$

if (not found) then Return R

let $Y = X^+ - X$, $Z = (X^+)^C$

Let Y be the attributes that X functionally determines (+ that are not in X)

And let Z be the complement, the other attributes that it doesn’t
BCNF Decomposition Algorithm

BCNFDcomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq$ [all attributes]

if (not found) then Return R

let $Y = X^+ - X$, $Z = (X^+)^C$
decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Split into one relation (table) with X plus the attributes that X determines (Y)...

Lecture 6 > Section 1 > BCNF
BCNF Decomposition Algorithm

BCNFDecomp(R):
 Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq \text{[all attributes]}$

 if (not found) then Return R

 let $Y = X^+ - X$, $Z = (X^+)^C$

 decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

And one relation with X plus the attributes it does not determine (Z)
BCNF Decomposition Algorithm

BCNFDcomp(R):
 Find a *set of attributes* X s.t.: $X^+ \neq X$ and $X^+ \neq [\text{all attributes}]

 if (not found) then Return R

 let $Y = X^+ - X$, $Z = (X^+)^C$
 decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

 Return BCNFDcomp(R_1), BCNFDcomp(R_2)

Proceed recursively until no more “bad” FDs!
Example

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq \text{[all attributes]}

if (not found) then Return R

let $Y = X^+ - X$, $Z = (X^+)^C$

decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R_1), BCNFDecomp(R_2)

Example

{A} \rightarrow {B, C}
{C} \rightarrow {D}

R(A, B, C, D, E)
Example

\[R(A, B, C, D, E) \]
\[\{A\}^+ = \{A, B, C, D\} \neq \{A, B, C, D, E\} \]

\[R_1(A, B, C, D) \]
\[\{C\}^+ = \{C, D\} \neq \{A, B, C, D\} \]

\[R_{11}(C, D) \]
\[R_{12}(A, B, C) \]
\[R_2(A, E) \]

\{A\} \rightarrow \{B, C\}
\{C\} \rightarrow \{D\}
Activity-7-1.ipynb
2. Decompositions
Recap: Decompose to remove redundancies

1. We saw that redundancies in the data ("bad FDs") can lead to data anomalies

2. We developed mechanisms to detect and remove redundancies by decomposing tables into BCNF
 1. BCNF decomposition is standard practice - very powerful & widely used!

3. However, sometimes decompositions can lead to more subtle unwanted effects...

When does this happen?
Decompositions in General

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

\[R_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \]

\[R_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \]

\[R_1 = \text{the projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]

\[R_2 = \text{the projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]
Theory of Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Sometimes a decomposition is “correct”
I.e. it is a **Lossless decomposition**
Lossy Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

However sometimes it isn’t

What’s wrong here?

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossless Decompositions

What (set) relationship holds between R1 Join R2 and R if lossless?

Hint: Which tuples of R will be present?

It’s lossless if we have equality!
Lossless Decompositions

A decomposition R to (R_1, R_2) is **lossless** if $R = R_1 \text{Join } R_2$
Lossless Decompositions

BCNF decomposition is always lossless. Why?

If \(\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\} \)
Then the decomposition is lossless

Note: don’t need
\(\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\} \)
A problem with BCNF

Problem: To enforce a FD, must reconstruct original relation—*on each insert!*

Note: This is historically inaccurate, but it makes it easier to explain
We do a BCNF decomposition on a “bad” FD:
\{\text{Unit}\}^+ = \{\text{Unit, Company}\}

We lose the FD \{\text{Company, Product}\} \rightarrow \{\text{Unit}\}!!
So Why is that a Problem?

No problem so far. All local FD’s are satisfied.

Let’s put all the data back into a single table again:

Violates the FD \(\{\text{Company, Product}\} \rightarrow \{\text{Unit}\}!!\)
The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables $R_1, R_2, ...$ with their own FDs $F_1, F_2, ...$

• We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct R—on each insert!
Possible Solutions

• Various ways to handle so that decompositions are all lossless / no FDs lost
 • For example 3NF- stop short of full BCNF decompositions. See Bonus Activity!

• Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...
3. MVDs
What you will learn about in this section

1. MVDs

2. ACTIVITY
Multi-Value Dependencies (MVDs)

- A multi-value dependency (MVD) is another type of dependency that could hold in our data, which is not captured by FDs

- Formal definition:
 - Given a relation \(R \) having attribute set \(A \), and two sets of attributes \(X, Y \subseteq A \)
 - The multi-value dependency (MVD) \(X \rightarrow Y \) holds on \(R \) if
 - for any tuples \(t_1, t_2 \in R \) s.t. \(t_1[X] = t_2[X] \), there exists a tuple \(t_3 \) s.t.:
 - \(t_1[X] = t_2[X] = t_3[X] \)
 - \(t_1[Y] = t_3[Y] \)
 - \(t_2[A \setminus Y] = t_3[A \setminus Y] \)
 - Where \(A \setminus B \) means “elements of set A not in set B”
Multi-Value Dependencies (MVDs)

• One less formal, literal way to phrase the definition of an MVD:

\[\text{The MVD } X \rightarrow Y \text{ holds on } R \text{ if for any pair of tuples with the same } X \text{ values, the “swapped” pair of tuples with the same } X \text{ values, but the other permutations of } Y \text{ and } A \setminus Y \text{ values, is also in } R \]

Ex: \(X = \{x\}, \ Y = \{y\} \):

\[
\begin{array}{ccc}
 x & y & z \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
 x & y & z \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

For \(X \rightarrow Y \) to hold must have...

Note the connection to a local cross-product...
Multi-Value Dependencies (MVDs)

• Another way to understand MVDs, in terms of *conditional independence*:

• The MVD $X \rightarrow Y$ holds on R if given X, Y is conditionally independent of $A \setminus Y$ and vice versa...

Here, given $x = 1$, we know for ex. that:
$y = 0 \rightarrow z = 1$

I.e. z is conditionally *dependent* on y given x

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Here, this is not the case!
I.e. z is conditionally *independent* of y given x

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Multiple Value Dependencies (MVDs)

A “real life” example...

Grad student CA thinks:
“Hmm... what is real life??
Watching a movie over the weekend?”
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater</th>
<th>film_name</th>
<th>snack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

Are there any functional dependencies that might hold here?

No...

And yet it seems like there is some pattern / dependency...
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater</th>
<th>film_name</th>
<th>snack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater</th>
<th>film_name</th>
<th>snack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

For a given movie theatre...

Given a set of movies and snacks...
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater</th>
<th>film_name</th>
<th>snack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

For a given movie theatre...

Given a set of movies and snacks...

Any movie / snack combination is possible!
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater (A)</th>
<th>film_name (B)</th>
<th>Snack (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

More formally, we write \(\{A\} \rightarrow \{B\} \) if for any tuples \(t_1, t_2 \) s.t. \(t_1[A] = t_2[A] \).
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater (A)</th>
<th>film_name (B)</th>
<th>Snack (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₂</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₃</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

More formally, we write \(\{A\} \leadsto \{B\} \) if for any tuples \(t₁, t₂ \) s.t. \(t₁[A] = t₂[A] \) there is a tuple \(t₃ \) s.t.

- \(t₃[A] = t₁[A] \)
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater (A)</th>
<th>film_name (B)</th>
<th>Snack (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated &</td>
<td>Kale Chips</td>
</tr>
<tr>
<td></td>
<td>Extended Edition</td>
<td></td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated &</td>
<td>Burrito</td>
</tr>
<tr>
<td></td>
<td>Extended Edition</td>
<td></td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

More formally, we write \(\{A\} \bowtie \{B\} \) if for any tuples \(t_1, t_2 \) s.t. \(t_1[A] = t_2[A] \) there is a tuple \(t_3 \) s.t.

- \(t_3[A] = t_1[A] \)
- \(t_3[B] = t_1[B] \)
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater (A)</th>
<th>film_name (B)</th>
<th>Snack (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
</tr>
<tr>
<td>t₂</td>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
</tr>
<tr>
<td>t₃</td>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
</tr>
<tr>
<td></td>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
</tr>
<tr>
<td></td>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
</tr>
</tbody>
</table>

More formally, we write \(\{A\} \rightarrow \{B\} \) if for any tuples \(t₁, t₂ \) s.t. \(t₁[A] = t₂[A] \) there is a tuple \(t₃ \) s.t.

- \(t₃[A] = t₁[A] \)
- \(t₃[B] = t₁[B] \)
- and \(t₃[R\setminus B] = t₂[R\setminus B] \)

Where \(R\setminus B \) is “R minus B” i.e. the attributes of R not in B.
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater (A)</th>
<th>film_name (B)</th>
<th>Snack (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>Rains 216</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td>Rains 218</td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

Note this also works!

Remember, an MVD holds over a relation or an instance, so defn. must hold for every applicable pair…
MVDs: Movie Theatre Example

<table>
<thead>
<tr>
<th>Movie_theater (A)</th>
<th>film_name (B)</th>
<th>Snack (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Burrito</td>
</tr>
<tr>
<td>t₂</td>
<td>Star Trek: The Wrath of Kahn</td>
<td>Kale Chips</td>
</tr>
<tr>
<td>t₃</td>
<td>Lord of the Rings: Concatenated & Extended Edition</td>
<td>Kale Chips</td>
</tr>
<tr>
<td></td>
<td>Rains 218</td>
<td>Burrito</td>
</tr>
<tr>
<td></td>
<td>Star Wars: The Boba Fett Prequel</td>
<td>Ramen</td>
</tr>
<tr>
<td></td>
<td>Rains 218</td>
<td>Plain Pasta</td>
</tr>
</tbody>
</table>

Actually, it expresses conditional independence (between film and snack given movie theatre)!

This expresses a sort of dependency (= data redundancy) that we can’t express with FDs.
Comments on MVDs

• *For AI nerds*: MVD is conditional independence in graphical models!

See the MVDs IPython notebook for more examples!
Activity-7-3.ipynb
Summary

• Constraints allow one to reason about redundancy in the data

• Normal forms describe how to remove this redundancy by decomposing relations
 • Elegant—by representing data appropriately certain errors are essentially impossible
 • For FDs, BCNF is the normal form.

• A tradeoff for insert performance: 3NF