Working with Light
Working with Light for Computer Graphics

Physics and Optics:
• Light is emitted from a light source
 • e.g. the sun, a light bulb, computer monitor, cell phone, etc.
• That emitted light impacts various objects, and may be reflected or absorbed
 • This reflection/absorption modifies the light
 • e.g. creating color, brightness, dullness/shininess, highlights, etc.
• In addition, light may pass (transmit) through various materials and (in doing so) be bent, scattered, etc.
 • e.g. prism, stained glass windows, water, etc.

Human Perception:
• Eventually, some light may enter our eyes creating a signal
• Our brain creates an image based on the signals it gets from our eyes

Software/Hardware:
• Understanding the physics of light (i.e. optics) is important
• Understanding human perception allows for MANY optimizations/simplifications in both software/hardware
• The images we create ARE NOT intended to duplicate reality, only to fool humans into believing such
Electromagnetic Spectrum

- The human eye can only see wavelengths between about 400 nm to 700 nm, so we focus on those.
Relative Power Distribution of Lights

- Tungsten Incandescent
- Daylight (D65)
- Mercury Fluorescent (MBF)
- Low Pressure Sodium (SOX)
- High Pressure Sodium (SON)
- Metal Halide 3000K (MBI)
Adding Light Energy

The human eye perceives combinations of light energy as follows:
Adding Light Energy

- Energy adds (per wavelength) according to: \(E(\lambda) = E_1(\lambda) + E_2(\lambda) \)

- This leads to the following relative power distributions:
Absorbing & Reflecting Light Energy

Shining white light on different colored paints

White light

White

Blue

Green

Red
Absorbing & Reflecting Light Energy

Light energy (per wavelength) is either reflected or absorbed: \[r(\lambda) + a(\lambda) = 1 \]
\[0 \leq r(\lambda), a(\lambda) \leq 1 \]

Reflected light energy (per wavelength) is computed via:

\[\text{Reflected}(\lambda) = E(\lambda)r(\lambda) = E(\lambda)(1 - a(\lambda)) \]
Sensor Absorption

- Sensors absorb light (per unit time) and create a signal (per unit time)
- In order to be small (both biologically/mechanically), they are highly specialized
- Specialization leads to the (entire) sensor creating only one signal (per unit time)
- This conflates all the various wavelengths of light into a single signal (per unit time)

Signal power (energy per second):
\[A = \int E(\lambda) a(\lambda) d\lambda \]

Not all wavelengths contribute equally to the final signal
The eye has 3 different types of cone sensors and 1 rod sensor
Proteins in the cone/rod cells absorb photons changing the cell’s membrane potential
At night, cones are under-saturated (no/low/noisy signal), and rods produce most of the understandable signal
During the day, the rod signals are over-saturated (all clamped to max), and we see primarily with cones
Response Functions for Cone/Rod Sensors

- The cone response functions vary based on the cone type (referred to as red/green/blue cones)
- The single rod sensor is interpreted as a black and white (or gray) light intensity

Note the similarity in red/green (in regard to red/green colorblindness)

At night, the single signal from rods is interpreted as lacking color (or a shade of gray)
Trichromatic Theory

• Given any human perceived “color”:
 • Can adjust the brightness of 3 single wavelength lasers (e.g. R = 700 nm, G = 546 nm, B = 435 nm) to fool a human observer into “mistakenly” thinking that the laser combination matches that “color” (i.e. as a single wavelength)
 • This is doable because each of the three cones can only send one signal (i.e., a 3 dimensional basis)

• Since the eye only perceives 3 signals (ignoring rods), only 3 signals are required for images, cameras, printers, displays, etc. (human perceived color is a 3 dimensional space!)
• Image formats store values in the R, G, and B channels

\[
C = R + G + B
\]
3D Color Space

- Map each primary color (Red, Green, Blue) to the unit distance along the x, y, z axes
- Black at (0,0,0), white at (1,1,1)
- The resulting RGB Color Cube represents all possible colors
A better 3D color space for user interfaces is based on Hue, Saturation, and Value (HSV)

- **Hue**: rainbow of colors ("wavelength")
- **Saturation**: intensity for a particular color
- **Value**: lightness or darkness of a particular color
Luminance and Chrominance (YUV)

- Another 3D color space uses 1 luminance (Y) and 2 chrominance (UV) channels
- Black and White televisions used Y only, which perceptually holds the most spatial details
- Thus, can compress more aggressively in U & V than in Y
Interchangeability of Color Spaces

• One can map back and forth between any two 3D color spaces via matrix multiplication (using an appropriate matrix and its inverse)

• For example:

\[
\begin{bmatrix}
Y \\
U \\
V
\end{bmatrix} = \begin{bmatrix}
.299 & .587 & .114 \\
-.14713 & -.28886 & .436 \\
.615 & -.51499 & -.10001
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

• Aside: note how important the Green channel is for the details in Y, as well as how unimportant the Blue channel is for those details
Additive vs. Subtractive Color Spaces

- **Additive Color Space:**
 - Superimposed colored lights (e.g. phone display)
 - Add spectra (wavelength by wavelength)
 - $R + G + B = \text{white}$

- **Subtractive Color Space:**
 - Sequence of color filters (e.g. ink pigments or paint)
 - Multiply by all absorption coefficients (wavelength by wavelength)
 - $R + G + B = \text{black}$
Printers (CMYK)

- Printers use a subtractive color model
- Cyan, Magenta, Yellow (CMY) are the three primary colors of the subtractive color model
- The ink partially or entirely masks/filters/absorbs colors on a white background, reducing the light that would otherwise be reflected
- Equal mixtures of C, M, Y (ideally) produce all shades of gray
- However, in practice, ink mixtures do not give perfect grays
- In addition, it’s difficult to get perfect alignment of the 3 inks
- Instead, most fine details are printed with the Key color (= K = black)
- This also reduces ink bleeding and the time for ink to dry (besides saving money on colored ink)
Limited Spatial Resolution

• Sensors are have a non-zero size (or surface area)
• Thus, the number of signals per square inch is limited, based on how closely sensors can be packed together

• Cones are densely packed near the center of the retina (the fovea), giving maximum detail for whatever the eye is looking directly at
• Rods have almost zero density at the fovea, which is why astronomers look out of the “side” of their eye
Distance Matters

- Closer/farther away objects project to larger/smaller areas on the cones, meaning more/less cones receive light signals from it
- Thus, closer objects can be seen in higher spatial detail than farther away objects

Resolution: 2048x1080
Size: 13.7m diagonal
4.29 dots per inch (dpi)

- Lower resolution is acceptable for a cinema screen, since viewers sit much farther away from it as compared to a cell phone - with 300+ pixels per inch (ppi)
- The number of cones per (image) feature is comparable between cinema screens and cell phones, given the differing distance of the observer
Projectors

- Making large displays for far away viewers is difficult; thus, projectors are very important

- A Digital Micro-Mirror Device (DMD) is the core component in Digital Light Processing (DLP) projectors
- Each mirror corresponds to one pixel, and has two states; it can either reflect the light into or out of the “pupil” of the projector
- Rapidly toggling a mirror between these two states produces brighter/dimmer light, controlled by the ratio of on-time to off-time
Display Technology

• The closer one sits to a display, the more cones per feature and thus more detail one can see
• Significant efforts have been spent on improving display (spatial) resolution
Camera Resolution

- Camera sensors use the photovoltaic effect to generate an electron when hit by a photon (with some efficiency/probability)
- They are quite complex and, like cones, take up physical space
- This limits the resolution of what they can capture (just like for cones in the eye)
Camera Resolution

- Each camera sensor records incoming light energy per second (power)
- Each captures only one signal (per unit time) for its entire 2D spatial area
- Color filters are used to limit incident light to a particular color (so the same sensor can be used for every color)

Note the doubled number of Green sensors, due to that color’s importance in capturing spatial details
Aside: Temporal Resolution

- For moving images (animations), 16 Hz (or more) is required for humans to *not* interpret them as a series of still images
 - Movies are recorded at 24 images per second
 - TV broadcasts have 30 images per second

- **Flicker fusion threshold:** frequency at which an intermittent light stimulus appears to be steady to the observer

- Even though motion seems continuous at 24-30 images per second, the brightness may still seem to flicker
 - Movies are thus refreshed at 48 or 72 Hz (each image is projected 2 or 3 times)
 - Computer monitors refresh at 60-80 Hz (or more) independent of what is being displayed
 - TVs (used to) use interlacing to approximate 60 Hz, showing half of each frame at a time

![Diagram of Interlaced vs Non-Interlaced (Progressive Scan)]
Brightness (Luminance)

- The human eye is much more sensitive to **spatial variations** in brightness (so-called gray scale) than to spatial variations in color.
- The 3 images on the right add together to give the image on the left.
- Notice which images on the right has the most spatial details.

Original Image = Greyscale + Color 1 + Color 2
Brightness Discrimination Experiment

• Changing the brightness (intensity) of the circle by 1 to 2% makes it just noticeable to most observers
Discretizing Brightness

• Since our eye can see small brightness changes, we need many levels for brightness
• Otherwise, changing brightness by the smallest amount would look discontinuous
• Thus, we typically use 256 levels for brightness
• That is, we store each color (R, G, B) with an integer ranging from 0 to 255
• High Dynamic Range (HDR) image formats use an even larger range than 0-255
Dynamic Range

• World:
 • Possible: 100,000,000,000:1 (from the sun to pitch black)
 • Typical real-world scenes: 100,000:1

• Human Eye:
 • Static: 100:1
 • Dynamic: 1,000,000:1 (as the eye moves, it adaptively adjusts exposure by changing the pupil size)

• Media:
 • Newsprint: 10:1
 • Glossy print: 60:1
 • Samsung F2370H LCD monitor: static 3,000:1, dynamic 150,000:1

 • **Static contrast ratio** is the luminance ratio between the brightest white and darkest black within a *single* image

 • **Dynamic contrast ratio** is the luminance ratio between brightest white possible (on any image) and the darkest black possible (on any image) on the same device

• The contrast ratio in a TV monitor specification is measured in a dark room. In normal office lighting conditions, the effective contrast ratio typically drops from 3,000:1 to less than 200:1
The World has High Dynamic Range

The relative irradiance values of the marked pixels:

- 1.0
- 18.0
- 15,116
- 1,907
- 46.2
- 2
The World has High Dynamic Range

- 16 photographs of the Stanford Memorial Church taken at 1-stop increments from 30s to 1/1000s
- No single image captures everything desirable in both the darkest and the brightest regions (some pixels are over-saturated and others have no signal at all)

From Debevec and Malik, *High Dynamic Range Photographs*
Tone Mapping

- “Compositing” all the information from all the images gives a result with a High Dynamic Range (i.e., 0-X with X >> 255)
- But that range is too large for the standard image format (i.e., since X > 255)
- Solution #1: Linearly rescale/compress the values so that X=255
 - Small intensity differences are quantized (a range of values map to the same integer), and relative differences (and details) are lost
- Solution #2: Logarithmic map to rescale/compress
 - Information is still quantized, but in a more forgiving way exploiting human “perceptual space”
- Solution #3: Other approaches…
 - E.g., Local operators - map each pixel value based on surrounding pixel values (human vision is sensitive to *local* contrast)
Human Perception of Intensities

- We perceive brightness intensity differences better at lower (as opposed to higher) light intensities.
- Logarithmic compression uses more resolution for the more-important lower intensities in the image (and thus less resolution for the less-important higher intensities).
- This gives less quantization in the lower intensities of the image (than in the higher intensities), and is thus more optimal for human consumption.

\[S = I^p \]

<table>
<thead>
<tr>
<th>Sense</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>0.33</td>
</tr>
<tr>
<td>Loudness</td>
<td>0.60</td>
</tr>
<tr>
<td>Length</td>
<td>1.00</td>
</tr>
<tr>
<td>Heaviness</td>
<td>1.45</td>
</tr>
</tbody>
</table>

\[B = I^{1/3} \]
Linear vs. Logarithmic Compression
Gamma Encoding and Correction

• Maximize the use of the information relative to human perception
• More bits are allocated to the lower intensity (darker) regions of the image than to the higher intensity (lighter) regions
• Gamma correction is applied to the gamma encoded images to convert them back to the original brightness/luminance