The Virtual World

Building a Virtual World

- Goal: mimic human vision in a virtual world (with a computer)
 - Cheat for efficiency, using knowledge about light and the eye (e.g. from the last lecture)
- Create a virtual camera: place it somewhere and point it at something
- Put film (containing pixels, with RGB values ranging from 0-255) into the camera
 - Taking a picture creates film data as the final image
- Place objects into the world, including a floor/ground, walls, ceiling/sky, etc.
 - Two step process: (1) make objects (geometric modeling), (2) place objects (transformations)
 - Making objects is itself a two-step process: (1) build geometry (geometric modeling), (2)
 paint geometry (texture mapping)
- Put lights into the scene (so that it's not completely dark)
- Finally, snap the picture:
 - "Code" emits light from (virtual) light sources, bounces that light off of (virtual) geometry, and follows that bounced light into the (virtual) camera and onto the (virtual) film
 - We will consider 2 methods (scanline rendering and ray tracing) for the taking this picture

Pupil

- Light emanates off of every point of an object outwards in every direction
 - That's why we can all see the same spot on the same object
 - Light leaving that spot/point (on the object) is entering each of our eyes
- Without a pupil, light from every point on an object would hit the same cone on our eye, averaging/blurring the light information
- The (small) pupil restricts the entry of light so that each cone only receives light from a small region on the object, giving interpretable spatial detail

Aperture

- Cameras are similar to the eye (with mechanical as opposed to biological components)
- Instead of cones, the camera has mechanical pixels
- Instead of a pupil, the camera has a small (adjustable) aperture for light to pass through
- Cameras also typically have a hefty/complex lens system

Aside: Lens Flare

- Many camera complexities are (often) not properly accounted for in virtual worlds
- Thus, certain effects (such as depth of field, motion blur, chromatic aberration, lens flare, etc.) have to be approximated/modeled in other ways (as we will discuss later)
- Example: Lens flare is caused by a complex lens system reflecting/scattering light
 - This depends on material inhomogeneities in the lenses, the geometry of lens surfaces, absorption/dispersion of lenses, antireflective coatings, diffraction, etc.

Pinhole Camera

- The pupil/aperture has to have a finite size in order for light to be able to pass through it
- When too small, not enough light enters and the image is too dark/noisy to interpret
 - In addition, light can diffract (instead of traveling in straight lines) distorting the image
- When too large, light from a large area of an object hits the same cone (causing blurring)
- Luckily, the virtual camera can use a single point for the aperture (without worrying about dark or distorted images)

Aside: Diffraction

- Light spread out as it goes through small openings
- This happens when the camera aperture is too small (diffraction limited)
- It leads to constructive/destructive interference of light waves (the Airy disk effect)

Pinhole Camera (a theoretical approximation)

- Light leaving any point travels in straight lines
- We only care about the lines that hit the pinhole (a single point)
 - Using a single point gives infinite depth of field (everything is in focus, no blurring)
- An upside-down image is formed by the intersection of these lines with an image plane
- More distant objects subtend smaller visual angles and appear smaller
- Objects occlude objects behind them

Virtual Camera

- Trick: Move the film out in front of the pinhole, so that the image is not upside down
- Only render (compute an image for) objects further away from the camera than the film plane
- Add a back clipping plane for efficiency
- Volume between the film (front clipping plane) and the back clipping plane is the viewing frustum (shown in blue)
 - Make sure that the near/far clipping planes have enough space between them to contain the scene
 - Make sure objects are inside the viewing frustum
 - Do not set the near clipping plane to be at the camera aperture!

Camera Distortion depends on Distance

- Do not put the camera too close to objects of interest!
 - Significant/severe deductions for poor camera placement, fisheye, etc. (because the image looks terrible)
- Set up the scene like a real-world scene!
- Get very familiar with the virtual camera!

@160CM

@25CM

Eye Distortion?

- Your eye also has distortion
- Unlike a camera, you don't actually see the signal received on the cones
- Instead, you perceive an image (highly) processed by your brain
- Your eyes constantly move around obtaining multiple images for your brain to work with
- You have two eyes, and see two images (in stereo), so triangulation can be used to estimate depth and to undo distortion

• If your skeptical about all this processing, remember that your eye sees this:

Dealing with Objects

- Let's start with a single 3D point $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and move it around in the virtual world
- An object is just a collection of points, so methods for handling a single point extend to handling entire objects
- Typically, objects are created in a reference space, which we refer to as object space
- After creation, we place objects into the scene, which we refer to as world space
- This may require rotation, translation, resizing of the object
- When taking a (virtual) picture, points on the object are projected onto the 2D film plane,
 which we refer to as <u>screen space</u>
- Unlike rotation/translation/resizing, the projection onto screen space is highly nonlinear and the source of undesirable distortion

Rotation

- Given a 3D point, $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- In 2D, one can rotate a point counter-clockwise about the origin via:

This is equivalent to rotating a 3D point around the z-axis using (i.e. multiplying by):

$$R_{z}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Rotation

• To rotate a 3D point around the x-axis, y-axis, z-axis (respectively), multiply by:
$$R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

$$R_y(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

$$R_z(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 • Matrix multiplication doesn't commute, i.e. $AB \neq BA$, so the order of rotations matters!

- Matrix multiplication doesn't commute, i.e. $AB \neq BA$, so the order of rotations matters!
- Rotating about the x-axis and then the y-axis, $R_v(\theta_v)R_x(\theta_x)\vec{x}$, is different than rotating about the y-axis and then the x-axis, $R_x(\theta_x)R_y(\theta_y)\vec{x}$
 - $R_{\nu}(\theta_{\nu})R_{x}(\theta_{x})\vec{x} \neq R_{x}(\theta_{x})R_{\nu}(\theta_{\nu})\vec{x}$ because $R_{\nu}(\theta_{\nu})R_{x}(\theta_{x}) \neq R_{x}(\theta_{x})R_{\nu}(\theta_{\nu})$

Line Segments are Preserved

• Consider two points \vec{p} and \vec{q} and the line segment between them:

$$\vec{u}(\alpha) = (1 - \alpha)\vec{p} + \alpha\vec{q}$$

- $\vec{u}(0) = \vec{p}$ and $\vec{u}(1) = \vec{q}$, and $0 \le \alpha \le 1$ specifies all the points on the line segment
- Multiplying points on the line segment by a rotation matrix R gives:

$$R\vec{u}(\alpha) = R((1-\alpha)\vec{p} + \alpha\vec{q}) = (1-\alpha)R\vec{p} + \alpha R\vec{q}$$

- $R\vec{u}(0)=R\vec{p}$ and $R\vec{u}(1)=R\vec{q}$, and $0\leq\alpha\leq1$ specifies all the points connecting $R\vec{p}$ and $R\vec{q}$
 - i.e., only need to rotate the endpoints in order to construct the new line segment (connecting them)
- $||R\vec{p}_1 R\vec{p}_2||_2^2 = ||R(\vec{p}_1 \vec{p}_2)||_2^2 = (\vec{p}_1 \vec{p}_2)^T R^T R (\vec{p}_1 \vec{p}_2) = ||\vec{p}_1 \vec{p}_2||_2^2$ shows that the distance between two rotated points is equivalent to the distance between the two original (unrotated) points

Angles are Preserved

• Consider two line segments \vec{u} and \vec{v} with $\vec{u} \cdot \vec{v} = ||\vec{u}||_2 ||\vec{v}||_2 \cos(\theta)$ where θ is the angle between them

- $R\vec{u} \cdot R\vec{v} = ||R\vec{u}||_2 ||R\vec{v}||_2 \cos(\hat{\theta})$
- $R\vec{u} \cdot R\vec{v} = \vec{u}^T R^T R\vec{v} = \vec{u}^T \vec{v} = ||\vec{u}||_2 ||\vec{v}||_2 \cos(\theta) = ||R\vec{u}||_2 ||R\vec{v}||_2 \cos(\theta)$
- So, the angle θ between \vec{u} and \vec{v} is the same as the the angle $\hat{\theta}$ between $R\vec{u}$ and $R\vec{v}$

Shape is Preserved

- In continuum mechanics, material deformation is measured by a strain tensor
- The six unique entries in the nonlinear Green strain tensor are computed by comparing an undeformed tetrahedron to its deformed counterpart
- Given a tetrahedron in 3D, it is fully determined by one point and three line segments (the dotted lines in the figure)

- The 3 lengths of these three line segments and the 3 angles between any two of them are used to compare the undeformed tetrahedron to its deformed counterpart
- Since we proved these were all identical under rotations, rotations are shape preserving

Shape is Preserved

Thus, we can rotate entire objects without changing them

Scaling (or Resizing)

- A scaling matrix $S = \begin{pmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{pmatrix}$ can both scale and shear the object
 - Shearing changes lengths/angles creating significant distortion
- When $s_1 = s_2 = s_3$, then $S = \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{pmatrix} = sI$ is pure scaling
- The distributive law of matrix multiplication (again) guarantees that line segments map to line segments
- $||S\vec{p}_1 S\vec{p}_2||_2^2 = s||\vec{p}_2 \vec{p}_2||_2^2$ implies that the distance between scaled points is increased/decreased by a factor of s
- $S\vec{u} \cdot S\vec{v} = s^2\vec{u} \cdot \vec{v} = s^2 ||\vec{u}||_2 ||\vec{v}||_2 \cos(\theta) = ||S\vec{u}||_2 ||S\vec{v}||_2 \cos(\theta)$ shows that angles between line segments are preserved
- Thus, uniform scaling grows/shrinks objects proportionally (they are mathematically <u>similar</u>)

Scaling (or Resizing)

Homogenous Coordinates

- In order to use matrix multiplication for transformations, homogeneous coordinates are required
- The homogeneous coordinates of a 3D point $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ are $\vec{x}_H = \begin{pmatrix} xw \\ yw \\ zw \\ w \end{pmatrix}$ for any $w \neq 0$
- Dividing homogenous coordinates by the fourth component (i.e. w) gives $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ or $\begin{pmatrix} \vec{x} \\ 1 \end{pmatrix}$
- 3D points are converted to $\vec{x}_H = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$, with w=1, to deal with translations
- Vectors $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ have homogenous coordinates $\vec{u}_H = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} \vec{u} \\ 0 \end{pmatrix}$

Homogenous Coordinates

- Let M_{3x3} be a 3x3 rotation or scaling matrix (as discussed previously)
- The transformation of a point \vec{x} is given by $M_{3x3}\vec{x}$
- To obtain the same result for $\begin{pmatrix} \vec{x} \\ 1 \end{pmatrix}$, use a 4x4 matrix $\begin{pmatrix} M_{3x3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} M_{3x3}\vec{x} \\ 1 \end{pmatrix}$

• Similarly, for a vector
$$\begin{pmatrix} M_{3x3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ 0 \end{pmatrix} = \begin{pmatrix} M_{3x3}\vec{u} \\ 0 \end{pmatrix}$$

Translation

• To translate a point
$$\vec{x}$$
 by $\vec{t}=\begin{pmatrix}t_1\\t_2\\t_3\end{pmatrix}$, multiply
$$\begin{pmatrix}I_{3x3}&t_2\\t_3\\0&0&0&1\end{pmatrix}\begin{pmatrix}x\\y\\z\\1\end{pmatrix}=\begin{pmatrix}\vec{x}+\vec{t}\\1\end{pmatrix}$$
• $I_{3x3}=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$ is the 3x3 identity matrix

•
$$I_{3x3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 is the 3x3 identity matrix

• For a vector
$$\begin{pmatrix} t_1 \\ t_{3x3} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ 0 \end{pmatrix} = \begin{pmatrix} \vec{u} \\ 0 \\ 0 \end{pmatrix} \text{ has no effect (as desired)}$$

Translation preserves line segments and the angles between them (and thus preserves shape)

Shape is Preserved

We can translate entire objects without changing them

Composite Transforms

Rotate 45 degrees about the point (1,1)

These transformations can be multiplied together to get a single matrix M=T(1,1)R(45)T(-1,-1)
 that can be used to multiply every relevant point in the (entire) object:

Order Matters

- Matrix multiplication does not commute: $AB \neq BA$
- The rightmost transform is applied to the points first

Hierarchical Transforms

- M₁ transforms the teapot from its object space to the table's object space (puts it on the table)
- M₂ transforms the table from its object space to world space
- M₂M₁ transforms the teapot from its object space to world space (and onto the table)

Using Transformations

- Create objects (or parts of objects) in convenient coordinate systems
- Assemble objects from their parts (using transformations)
- Transform the assembled object into the scene (via hierarchical transformations)
- Can make multiple copies (even of different sizes) of the same object (simply) by adding another transform stack (efficiently avoiding the creation of a new copy of the object)

- Helpful Hint: Always compute composite transforms for objects or sub-objects, and apply the single composite transform to all relevant points (it's a lot faster)
- Helpful Hint: Orientation is best done first:
 - Place the object at the center of the target coordinate system, and rotate it into the desired orientation
 - Afterwards, translate the object to the desired location

Screen Space Projection

- Projecting geometry from world space into screen space can create significant distortion
- This is because $\frac{1}{z}$ is highly nonlinear

$$\frac{x}{z} = \frac{x'}{h}$$
 \longrightarrow $x' = h\frac{x}{z}$ and $\frac{y}{z} = \frac{y'}{h}$ \longrightarrow $y' = h\frac{y}{z}$

Matrix Form

• Writing the screen space result as $\begin{pmatrix} x'w' \\ y'w' \\ z'w' \\ w' \end{pmatrix}$ gives the desired $\frac{1}{z}$ after dividing by w'=z

• Consider:
$$\begin{pmatrix} x'w' \\ y'w' \\ z'w' \end{pmatrix} = \begin{pmatrix} h & 0 & 0 & 0 \\ 0 & h & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

• This has w' = z, x'w' = hx or $x' = \frac{hx}{z}$, and y'w' = hy or $y' = \frac{hy}{z}$ (as desired)

• Homogenous coordinates allows the <u>nonlinear</u> $\frac{1}{z}$ to be expressed with <u>linear</u> matrix multiplication (so it can be added to the matrix multiplication stack!)

Perspective Projection

- The third equation is z'w' = az + b or z'z = az + b
- New z values aren't required (projected points all lie on the z = h image plane)
- However, computing z' as a monotonically increasing function of z allows it to be used to determine occlusions (for alpha channel transparency)
- The near (z = n) and far (z = f) clipping planes are preserved via z' = n and z' = f
- 2 equations in 2 unknowns ($n^2 = an + b$ and $f^2 = af + b$); so, a = n + f and b = -fn
- This transforms the viewing frustum into an orthographic volume in screen space

