The Virtual World

Building a Virtual World

- Goal: mimic human vision in a virtual world (with a computer)
- Cheat for efficiency, using knowledge about light and the eye (e.g. from the last lecture)
- Create a virtual camera: place it somewhere and point it at something
- Put film (containing pixels, with RGB values ranging from 0-255) into the camera
- Taking a picture creates film data as the final image
- Place objects into the world, including a floor/ground, walls, ceiling/sky, etc.
- Two step process: (1) make objects (geometric modeling), (2) place objects (transformations)
- Making objects is itself a two-step process: (1) build geometry (geometric modeling), (2) paint geometry (texture mapping)
- Put lights into the scene (so that it's not completely dark)
- Finally, snap the picture:
- "Code" emits light from (virtual) light sources, bounces that light off of (virtual) geometry, and follows that bounced light into the (virtual) camera and onto the (virtual) film
- We will consider 2 methods (scanline rendering and ray tracing) for the taking this picture

Pupil

- Light emanates off of every point of an object outwards in every direction
- That's why we can all see the same spot on the same object
- Light leaving that spot/point (on the object) is entering each of our eyes
- Without a pupil, light from every point on an object would hit the same cone on our eye, averaging/blurring the light information
- The (small) pupil restricts the entry of light so that each cone only receives light from a small region on the object, giving interpretable spatial detail

Aperture

- Cameras are similar to the eye (with mechanical as opposed to biological components)
- Instead of cones, the camera has mechanical pixels
- Instead of a pupil, the camera has a small (adjustable) aperture for light to pass through
- Cameras also typically have a hefty/complex lens system

Aside: Lens Flare

- Many camera complexities are (often) not properly accounted for in virtual worlds
- Thus, certain effects (such as depth of field, motion blur, chromatic aberration, lens flare, etc.) have to be approximated/modeled in other ways (as we will discuss later)
- Example: Lens flare is caused by a complex lens system reflecting/scattering light
- This depends on material inhomogeneities in the lenses, the geometry of lens surfaces, absorption/dispersion of lenses, antireflective coatings, diffraction, etc.

Pinhole Camera

- The pupil/aperture has to have a finite size in order for light to be able to pass through it
- When too small, not enough light enters and the image is too dark/noisy to interpret
- In addition, light can diffract (instead of traveling in straight lines) distorting the image
- When too large, light from a large area of an object hits the same cone (causing blurring)
- Luckily, the virtual camera can use a single point for the aperture (without worrying about dark or distorted images)

Aside: Diffraction

- Light spread out as it goes through small openings
- This happens when the camera aperture is too small (diffraction limited)
- It leads to constructive/destructive interference of light waves (the Airy disk effect)

Pinhole Camera (a theoretical approximation)

- Light leaving any point travels in straight lines
- We only care about the lines that hit the pinhole (a single point)
- Using a single point gives infinite depth of field (everything is in focus, no blurring)
- An upside-down image is formed by the intersection of these lines with an image plane
- More distant objects subtend smaller visual angles and appear smaller
- Objects occlude objects behind them

Virtual Camera

- Trick: Move the film out in front of the pinhole, so that the image is not upside down
- Only render (compute an image for) objects further away from the camera than the film plane
- Add a back clipping plane for efficiency
- Volume between the film (front clipping plane) and the back clipping plane is the viewing frustum (shown in blue)
- Make sure that the near/far clipping planes have enough space between them to contain the scene
- Make sure objects are inside the viewing frustum
- Do not set the near clipping plane to be at the camera aperture!

Camera Distortion depends on Distance

- Do not put the camera too close to objects of interest!
- Significant/severe deductions for poor camera placement, fisheye, etc. (because the image looks terrible)
- Set up the scene like a real-world scene!
- Get very familiar with the virtual camera!

@160CM

@25CM

Eye Distortion?

- Your eye also has distortion
- Unlike a camera, you don't actually see the signal received on the cones
- Instead, you perceive an image (highly) processed by your brain
- Your eyes constantly move around obtaining multiple images for your brain to work with
- You have two eyes, and see two images (in stereo), so triangulation can be used to estimate depth and to undo distortion
- If your skeptical about all this processing, remember that your eye sees this:

Dealing with Objects

- Let's start with a single 3D point $\vec{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and move it around in the virtual world
- An object is just a collection of points, so methods for handling a single point extend to handling entire objects
- Typically, objects are created in a reference space, which we refer to as object space
- After creation, we place objects into the scene, which we refer to as world space
- This may require rotation, translation, resizing of the object
- When taking a (virtual) picture, points on the object are projected onto the 2D film plane, which we refer to as screen space
- Unlike rotation/translation/resizing, the projection onto screen space is highly nonlinear and the source of undesirable distortion

Rotation

- Given a 3D point, $\vec{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
- In 2D, one can rotate a point counter-clockwise about the origin via:

$$
\binom{x^{n e w}}{y^{n e w}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}=R(\theta)\binom{x}{y}
$$

- This is equivalent to rotating a 3D point around the z-axis using (i.e. multiplying by):

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Rotation

- To rotate a 3D point around the x-axis, y-axis, z-axis (respectively), multiply by:

$$
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad . \begin{aligned}
& \\
&
\end{aligned} R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Matrix multiplication doesn't commute, i.e. $A B \neq B A$, so the order of rotations matters!
- Rotating about the x -axis and then the y -axis, $R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) \vec{x}$, is different than rotating about the y -axis and then the x-axis, $R_{x}\left(\theta_{x}\right) R_{y}\left(\theta_{y}\right) \vec{x}$
- $R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) \vec{x} \neq R_{x}\left(\theta_{x}\right) R_{y}\left(\theta_{y}\right) \vec{x}$ because $R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) \neq R_{x}\left(\theta_{x}\right) R_{y}\left(\theta_{y}\right)$

Line Segments are Preserved

- Consider two points \vec{p} and \vec{q} and the line segment between them:

$$
\vec{u}(\alpha)=(1-\alpha) \vec{p}+\alpha \vec{q}
$$

- $\vec{u}(0)=\vec{p}$ and $\vec{u}(1)=\vec{q}$, and $0 \leq \alpha \leq 1$ specifies all the points on the line segment
- Multiplying points on the line segment by a rotation matrix R gives:

$$
R \vec{u}(\alpha)=R((1-\alpha) \vec{p}+\alpha \vec{q})=(1-\alpha) R \vec{p}+\alpha R \vec{q}
$$

- $R \vec{u}(0)=R \vec{p}$ and $R \vec{u}(1)=R \vec{q}$, and $0 \leq \alpha \leq 1$ specifies all the points connecting $R \vec{p}$ and $R \vec{q}$
- i.e., only need to rotate the endpoints in order to construct the new line segment (connecting them)
- $\left\|R \vec{p}_{1}-R \vec{p}_{2}\right\|_{2}^{2}=\left\|R\left(\vec{p}_{1}-\vec{p}_{2}\right)\right\|_{2}^{2}=\left(\vec{p}_{1}-\vec{p}_{2}\right)^{T} R^{T} R\left(\vec{p}_{1}-\vec{p}_{2}\right)=\left\|\vec{p}_{1}-\vec{p}_{2}\right\|_{2}^{2}$ shows that the distance between two rotated points is equivalent to the distance between the two original (unrotated) points

Angles are Preserved

- Consider two line segments \vec{u} and \vec{v} with $\vec{u} \cdot \vec{v}=\|\vec{u}\|_{2}\|\vec{v}\|_{2} \cos (\theta)$ where θ is the angle between them

- $R \vec{u} \cdot R \vec{v}=\|R \vec{u}\|_{2}\|R \vec{v}\|_{2} \cos (\hat{\theta})$
- $R \vec{u} \cdot R \vec{v}=\vec{u}^{T} R^{T} R \vec{v}=\vec{u}^{T} \vec{v}=\|\vec{u}\|_{2}\|\vec{v}\|_{2} \cos (\theta)=\|R \vec{u}\|_{2}\|R \vec{v}\|_{2} \cos (\theta)$
- So, the angle θ between \vec{u} and \vec{v} is the same as the the angle $\hat{\theta}$ between $R \vec{u}$ and $R \vec{v}$

Shape is Preserved

- In continuum mechanics, material deformation is measured by a strain tensor
- The six unique entries in the nonlinear Green strain tensor are computed by comparing an undeformed tetrahedron to its deformed counterpart
- Given a tetrahedron in 3D, it is fully determined by one point and three line segments (the dotted lines in the figure)

- The 3 lengths of these three line segments and the 3 angles between any two of them are used to compare the undeformed tetrahedron to its deformed counterpart
- Since we proved these were all identical under rotations, rotations are shape preserving

Shape is Preserved

- Thus, we can rotate entire objects without changing them

Scaling (or Resizing)

- A scaling matrix $S=\left(\begin{array}{ccc}s_{1} & 0 & 0 \\ 0 & s_{2} & 0 \\ 0 & 0 & s_{3}\end{array}\right)$ can both scale and shear the object
- Shearing changes lengths/angles creating significant distortion
-When $s_{1}=s_{2}=s_{3}$, then $S=\left(\begin{array}{lll}s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s\end{array}\right)=s I$ is pure scaling
- The distributive law of matrix multiplication (again) guarantees that line segments map to line segments
- $\left\|S \vec{p}_{1}-S \vec{p}_{2}\right\|_{2}^{2}=s\left\|\vec{p}_{2}-\vec{p}_{2}\right\|_{2}^{2}$ implies that the distance between scaled points is increased/decreased by a factor of s
- $S \vec{u} \cdot S \vec{v}=s^{2} \vec{u} \cdot \vec{v}=s^{2}\|\vec{u}\|_{2}\|\vec{v}\|_{2} \cos (\theta)=\|S \vec{u}\|_{2}\|S \vec{v}\|_{2} \cos (\theta)$ shows that angles between line segments are preserved
- Thus, uniform scaling grows/shrinks objects proportionally (they are mathematically similar)

Scaling (or Resizing)

Homogenous Coordinates

- In order to use matrix multiplication for transformations, homogeneous coordinates are required
- The homogeneous coordinates of a 3D point $\vec{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ are $\vec{x}_{H}=\left(\begin{array}{c}x w \\ y w \\ z w \\ w\end{array}\right)$ for any $w \neq 0$
- Dividing homogenous coordinates by the fourth component (i.e. w) gives $\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)$ or $\binom{\vec{x}}{1}$
- 3D points are converted to $\vec{x}_{H}=\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)$, with $w=1$, to deal with translations
- Vectors $\vec{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ have homogenous coordinates $\vec{u}_{H}=\left(\begin{array}{c}u_{1} \\ u_{2} \\ u_{3} \\ 0\end{array}\right)$ or $\binom{\vec{u}}{0}$

Homogenous Coordinates

- Let $M_{3 x 3}$ be a 3×3 rotation or scaling matrix (as discussed previously)
- The transformation of a point \vec{x} is given by $M_{3 x 3} \vec{x}$
- To obtain the same result for $\binom{\vec{x}}{1}$, use a 4×4 matrix $\left(\begin{array}{ccc}M_{3 x 3} & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)=\binom{M_{3 \times 3} \vec{x}}{1}$
- Similarly, for a vector $\left(\begin{array}{ccc}M_{3 x 3} & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ 0\end{array}\right)=\binom{M_{3 x 3} \vec{u}}{0}$

Translation

- To translate a point \vec{x} by $\vec{t}=\left(\begin{array}{c}t_{1} \\ t_{2} \\ t_{3}\end{array}\right)$, multiply $\left(\begin{array}{ccc} & & t_{1} \\ & I_{3 x 3} & t_{2} \\ 0 & 0 & 0 \\ t_{3}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=\binom{\vec{x}+\vec{t}}{1}$
- $I_{3 \times 3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is the 3×3 identity matrix
- For a vector $\left(\begin{array}{ccc} & & \\ t_{1} \\ & I_{3 x 3} & \\ t_{2} \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}t_{3} \\ u_{1} \\ u_{2} \\ u_{3} \\ 0\end{array}\right)=\binom{\vec{u}}{0}$ has no effect (as desired)
- Translation preserves line segments and the angles between them (and thus preserves shape)

Shape is Preserved

- We can translate entire objects without changing them

Composite Transforms

- Rotate 45 degrees about the point $(1,1)$

$\mathrm{T}(-1,-1)$

$T(1,1)$
- These transformations can be multiplied together to get a single matrix $\mathrm{M}=\mathrm{T}(1,1) \mathrm{R}(45) \mathrm{T}(-1,-1)$ that can be used to multiply every relevant point in the (entire) object:

Order Matters

- Matrix multiplication does not commute: $A B \neq B A$
- The rightmost transform is applied to the points first

$\mathrm{T}(1,1) \mathrm{R}(45) \quad \neq \quad \mathrm{R}(45) \mathrm{T}(\mathbf{1}, \mathbf{1})$

Hierarchical Transforms

- M_{1} transforms the teapot from its object space to the table's object space (puts it on the table)
- M_{2} transforms the table from its object space to world space
- $\mathrm{M}_{2} \mathrm{M}_{1}$ transforms the teapot from its object space to world space (and onto the table)

Using Transformations

- Create objects (or parts of objects) in convenient coordinate systems
- Assemble objects from their parts (using transformations)
- Transform the assembled object into the scene (via hierarchical transformations)
- Can make multiple copies (even of different sizes) of the same object (simply) by adding another transform stack (efficiently avoiding the creation of a new copy of the object)
- Helpful Hint: Always compute composite transforms for objects or sub-objects, and apply the single composite transform to all relevant points (it's a lot faster)
- Helpful Hint: Orientation is best done first:
- Place the object at the center of the target coordinate system, and rotate it into the desired orientation
- Afterwards, translate the object to the desired location

Screen Space Projection

- Projecting geometry from world space into screen space can create significant distortion
- This is because $\frac{1}{z}$ is highly nonlinear

Matrix Form

Writing the screen space result as $\left(\begin{array}{c}x^{\prime} w^{\prime} \\ y^{\prime} w^{\prime} \\ z^{\prime} w^{\prime} \\ w^{\prime}\end{array}\right)$ gives the desired $\frac{1}{z}$ after dividing by $w^{\prime}=z$

- Consider: $\left(\begin{array}{c}x^{\prime} w^{\prime} \\ y^{\prime} w^{\prime} \\ z^{\prime} w^{\prime} \\ w^{\prime}\end{array}\right)=\left(\begin{array}{cccc}h & 0 & 0 & 0 \\ 0 & h & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)$
- This has $w^{\prime}=z, x^{\prime} w^{\prime}=h x$ or $x^{\prime}=\frac{h x}{z}$, and $y^{\prime} w^{\prime}=h y$ or $y^{\prime}=\frac{h y}{z}$ (as desired)
- Homogenous coordinates allows the nonlinear $\frac{1}{z}$ to be expressed with linear matrix multiplication (so it can be added to the matrix multiplication stack!)

Perspective Projection

- The third equation is $z^{\prime} w^{\prime}=a z+b$ or $z^{\prime} z=a z+b$
- New z values aren't required (projected points all lie on the $z=h$ image plane)
- However, computing z^{\prime} as a monotonically increasing function of z allows it to be used to determine occlusions (for alpha channel transparency)
- The near $(z=n)$ and far $(z=f)$ clipping planes are preserved via $z^{\prime}=n$ and $z^{\prime}=f$
- 2 equations in 2 unknowns ($n^{2}=a n+b$ and $f^{2}=a f+b$); so, $a=n+f$ and $b=-f n$
- This transforms the viewing frustum into an orthographic volume in screen space

