
The Virtual World



Building a Virtual World
• Goal: mimic human vision in a virtual world (with a computer)
• Cheat for efficiency, using knowledge about light and the eye (e.g. from the last lecture)
• Create a virtual camera: place it somewhere and point it at something
• Put film (containing pixels, with RGB values ranging from 0-255) into the camera
• Taking a picture creates film data as the final image
• Place objects into the world, including a floor/ground, walls, ceiling/sky, etc.
• Two step process: (1) make objects (geometric modeling), (2) place objects (transformations)
• Making objects is itself a two-step process: (1) build geometry (geometric modeling), (2) 

paint geometry (texture mapping)
• Put lights into the scene (so that it’s not completely dark)
• Finally, snap the picture:
• “Code” emits light from (virtual) light sources, bounces that light off of (virtual) geometry, and 

follows that bounced light into the (virtual) camera and onto the (virtual) film
• We will consider 2 methods (scanline rendering and ray tracing) for the taking this picture



Pupil
• Light emanates off of every point of an object outwards in every direction

• That’s why we can all see the same spot on the same object
• Light leaving that spot/point (on the object) is entering each of our eyes

• Without a pupil, light from every point on an object would hit the same cone on our eye, 
averaging/blurring the light information
• The (small) pupil restricts the entry of light so that each cone only receives light from a small 

region on the object, giving interpretable spatial detail



Aperture
• Cameras are similar to the eye (with mechanical as opposed to biological components)
• Instead of cones, the camera has mechanical pixels
• Instead of a pupil, the camera has a small (adjustable) aperture for light to pass through 
• Cameras also typically have a hefty/complex lens system



Aside: Lens Flare
• Many camera complexities are (often) not properly accounted for in virtual worlds
• Thus, certain effects (such as depth of field, motion blur, chromatic aberration, lens flare, etc.) 
have to be approximated/modeled in other ways (as we will discuss later)
• Example: Lens flare is caused by a complex lens system reflecting/scattering light

• This depends on material inhomogeneities in the lenses, the geometry of lens surfaces, absorption/dispersion 
of lenses, antireflective coatings, diffraction, etc.



Pinhole Camera
• The pupil/aperture has to have a finite size in order for light to be able to pass through it
• When too small, not enough light enters and the image is too dark/noisy to interpret

• In addition, light can diffract (instead of traveling in straight lines) distorting the image
• When too large, light from a large area of an object hits the same cone (causing blurring)
• Luckily, the virtual camera can use a single point for the aperture (without worrying about dark 

or distorted images)



Aside: Diffraction
• Light spread out as it goes through small openings
• This happens when the camera aperture is too small (diffraction limited)
• It leads to constructive/destructive interference of light waves (the Airy disk effect)



Pinhole Camera (a theoretical approximation)
• Light leaving any point travels in straight lines
• We only care about the lines that hit the pinhole (a single point)

• Using a single point gives infinite depth of field (everything is in focus, no blurring)
• An upside-down image is formed by the intersection of these lines with an image plane
• More distant objects subtend smaller visual angles and appear smaller
• Objects occlude objects behind them



Virtual Camera
• Trick: Move the film out in front of the pinhole, so that the image is not upside down
• Only render (compute an image for) objects further away from the camera than the film plane
• Add a back clipping plane for efficiency
• Volume between the film (front clipping plane) and the back clipping plane is the viewing 

frustum (shown in blue)
• Make sure that the near/far clipping planes have enough space between them to contain the scene
• Make sure objects are inside the viewing frustum
• Do not set the near clipping plane to be at the camera aperture!



Camera Distortion depends on Distance
• Do not put the camera too close to objects of interest!
• Significant/severe deductions for poor camera placement, fisheye, etc. (because the image looks terrible)
• Set up the scene like a real-world scene!
• Get very familiar with the virtual camera!



Eye Distortion?
• Your eye also has distortion

• Unlike a camera, you don’t actually see the signal received on the cones
• Instead, you perceive an image (highly) processed by your brain
• Your eyes constantly move around obtaining multiple images for your brain to work with 
• You have two eyes, and see two images (in stereo), so triangulation can be used to estimate 
depth and to undo distortion

• If your skeptical about all this processing, remember that your eye sees this:



Dealing with Objects

• Let’s start with a single 3D point �⃗� =
𝑥
𝑦
𝑧

 and move it around in the virtual world

• An object is just a collection of points, so methods for handling a single point extend to 
handling entire objects

• Typically, objects are created in a reference space, which we refer to as object space
• After creation, we place objects into the scene, which we refer to as world space
• This may require rotation, translation, resizing of the object

• When taking a (virtual) picture, points on the object are projected onto the 2D film plane, 
which we refer to as screen space
• Unlike rotation/translation/resizing, the projection onto screen space is highly nonlinear and 
the source of undesirable distortion



Rotation

• Given a 3D point, �⃗� =
𝑥
𝑦
𝑧

• In 2D, one can rotate a point counter-clockwise about the origin via:

• This is equivalent to rotating a 3D point around the z-axis using (i.e. multiplying by):

𝑥!"#
𝑦!"# = cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
𝑥
𝑦 = 𝑅(𝜃)

𝑥
𝑦

𝑅$ 𝜃 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1



Rotation
• To rotate a 3D point around the x-axis, y-axis, z-axis (respectively), multiply by:

• Matrix multiplication doesn’t commute, i.e. 𝐴𝐵 ≠ 𝐵𝐴, so the order of rotations matters!
• Rotating about the x-axis and then the y-axis, 𝑅! 𝜃! 𝑅" 𝜃" �⃗�, is different than rotating about 
the y-axis and then the x-axis, 𝑅" 𝜃" 𝑅! 𝜃! �⃗�
• 𝑅! 𝜃! 𝑅" 𝜃" �⃗� ≠ 𝑅" 𝜃" 𝑅! 𝜃! �⃗� because 𝑅! 𝜃! 𝑅" 𝜃" ≠ 𝑅" 𝜃" 𝑅! 𝜃!

𝑅# 𝜃 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝑅! 𝜃 =
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

𝑅" 𝜃 =
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃



Line Segments are Preserved
• Consider two points �⃗� and �⃗� and the line segment between them:

• 𝑢 0 = �⃗� and 𝑢 1 = �⃗�, and 0 ≤ 𝛼 ≤ 1 specifies all the points on the line segment

• Multiplying points on the line segment by a rotation matrix 𝑅 gives:

• 𝑅𝑢 0 = 𝑅�⃗� and 𝑅𝑢 1 = 𝑅�⃗�, and 0 ≤ 𝛼 ≤ 1 specifies all the points connecting 𝑅�⃗� and 𝑅�⃗�
• i.e., only need to rotate the endpoints in order to construct the new line segment (connecting them)

• 𝑅�⃗�$ − 𝑅�⃗�% %
% = 𝑅 �⃗�$ − �⃗�% %

% = �⃗�$ − �⃗�% &𝑅&𝑅 �⃗�$ − �⃗�% = �⃗�$ − �⃗�% %
% shows that the 

distance between two rotated points is equivalent to the distance between the two original (un-
rotated) points

𝑢 𝛼 = 1 − 𝛼 �⃗� + 𝛼�⃗�

𝑅𝑢 𝛼 = 𝑅 1 − 𝛼 �⃗� + 𝛼�⃗� = 1 − 𝛼 𝑅�⃗� + 𝛼𝑅�⃗�



Angles are Preserved
• Consider two line segments 𝑢 and �⃗� with 𝑢 ⋅ �⃗� = 𝑢 % �⃗� %	cos(𝜃) where 𝜃 is the angle 
between them

• 𝑅𝑢 ⋅ 𝑅�⃗� = 𝑅𝑢 % 𝑅�⃗� %	cos( >𝜃)
• 𝑅𝑢 ⋅ 𝑅�⃗� = 𝑢&𝑅&𝑅�⃗� = 𝑢&�⃗� = 𝑢 % �⃗� % cos 𝜃 = 𝑅𝑢 % 𝑅�⃗� %	cos(𝜃)
• So, the angle 𝜃 between 𝑢 and �⃗� is the same as the the angle >𝜃 between 𝑅𝑢 and 𝑅�⃗� 



Shape is Preserved
• In continuum mechanics, material deformation is measured by a strain tensor
• The six unique entries in the nonlinear Green strain tensor are computed by comparing an 
undeformed tetrahedron to its deformed counterpart
• Given a tetrahedron in 3D, it is fully determined by one point and three line segments (the 
dotted lines in the figure)

• The 3 lengths of these three line segments and the 3 angles between any two of them are 
used to compare the undeformed tetrahedron to its deformed counterpart
• Since we proved these were all identical under rotations, rotations are shape preserving   



Shape is Preserved
• Thus, we can rotate entire objects without changing them  



Scaling (or Resizing)

• A scaling matrix 𝑆 =
𝑠$ 0 0
0 𝑠% 0
0 0 𝑠'

 can both scale and shear the object

• Shearing changes lengths/angles creating significant distortion

• When 𝑠$ = 𝑠% = 𝑠', then 𝑆 =
𝑠 0 0
0 𝑠 0
0 0 𝑠

= 𝑠𝐼 is pure scaling

• The distributive law of matrix multiplication (again) guarantees that line segments map to line 
segments
• 𝑆�⃗�$ − 𝑆�⃗�% %

% = 𝑠 �⃗�% − �⃗�% %
% implies that the distance between scaled points is 

increased/decreased by a factor of 𝑠
• 𝑆𝑢 ⋅ 𝑆�⃗� = s%𝑢 ⋅ �⃗� = 𝑠% 𝑢 % �⃗� % cos 𝜃 = 𝑆𝑢 % 𝑆�⃗� %	cos(𝜃) shows that angles between 
line segments are preserved
• Thus, uniform scaling grows/shrinks objects proportionally (they are mathematically similar)



Scaling (or Resizing)

non-uniform 

uniform 

uniform 



Homogenous Coordinates
• In order to use matrix multiplication for transformations, homogeneous coordinates are 
required

• The homogeneous coordinates of a 3D point �⃗� =
𝑥
𝑦
𝑧

 are �⃗�( =

𝑥𝑤
𝑦𝑤
𝑧𝑤
𝑤

 for any 𝑤 ≠ 0

• Dividing homogenous coordinates by the fourth component (i.e. 𝑤) gives 

𝑥
𝑦
𝑧
1

 or �⃗�
1

 

• 3D points are converted to �⃗�( =

𝑥
𝑦
𝑧
1

, with 𝑤 = 1, to deal with translations

• Vectors 𝑢 =
𝑢$
𝑢%
𝑢'

 have homogenous coordinates 𝑢( =

𝑢$
𝑢%
𝑢'
0

 or 𝑢
0



Homogenous Coordinates
• Let 𝑀'"' be a 3x3 rotation or scaling matrix (as discussed previously)
• The transformation of a point �⃗� is given by 𝑀'"'�⃗�

• To obtain the same result for �⃗�
1

, use a 4x4 matrix 𝑀'"'

0
0
0

0 0 0 1

𝑥
𝑦
𝑧
1

= 𝑀'"'�⃗�
1

• Similarly, for a vector 𝑀'"'

0
0
0

0 0 0 1

𝑢$
𝑢%
𝑢'
0

= 𝑀'"'𝑢
0



Translation

• To translate a point �⃗� by 𝑡 =
𝑡$
𝑡%
𝑡'

, multiply 𝐼'"'
𝑡$
𝑡%
𝑡'

0 0 0 1

𝑥
𝑦
𝑧
1

= �⃗� + 𝑡
1

 

• 𝐼#"# =
1 0 0
0 1 0
0 0 1

 is the 3x3 identity matrix

• For a vector 𝐼'"'
𝑡$
𝑡%
𝑡'

0 0 0 1

𝑢$
𝑢%
𝑢'
0

= 𝑢
0

 has no effect (as desired)

• Translation preserves line segments and the angles between them (and thus preserves shape)



Shape is Preserved
• We can translate entire objects without changing them  



Composite Transforms
• Rotate 45 degrees about the point (1,1)

• These transformations can be multiplied together to get a single matrix M=T(1,1)R(45)T(-1,-1) 
that can be used to multiply every relevant point in the (entire) object:

T(-1,-1) R(45) T(1,1)



Order Matters
• Matrix multiplication does not commute: 𝐴𝐵 ≠ 𝐵𝐴
• The rightmost transform is applied to the points first

R(45)T(1,1)T(1,1)R(45) ≠



Hierarchical Transforms
• M1 transforms the teapot from its object space to the table’s object space (puts it on the table)
• M2 transforms the table from its object space to world space
• M2M1 transforms the teapot from its object space to world space (and onto the table)

𝑀!

𝑀"

𝑀"𝑀!



Using Transformations
• Create objects (or parts of objects) in convenient coordinate systems
• Assemble objects from their parts (using transformations)
• Transform the assembled object into the scene (via hierarchical transformations)
• Can make multiple copies (even of different sizes) of the same object (simply) by adding 

another transform stack (efficiently avoiding the creation of a new copy of the object)

• Helpful Hint: Always compute composite transforms for objects or sub-objects, and apply the 
single composite transform to all relevant points (it’s a lot faster)

• Helpful Hint: Orientation is best done first:
• Place the object at the center of the target coordinate system, and rotate it into the desired orientation
• Afterwards, translate the object to the desired location



Screen Space Projection
• Projecting geometry from world space into screen space can create significant distortion
• This is because $# is highly nonlinear

film plane

pinhole

z-axis
(x’,y’,h)

(x,y,z)

z

h

x
x’

and



Matrix Form

• Writing the screen space result as 

𝑥*𝑤′
𝑦*𝑤′
𝑧*𝑤′
𝑤′

 gives the desired 
!
"

 after dividing by 𝑤* = 𝑧

• Consider: 

𝑥*𝑤′
𝑦*𝑤′
𝑧*𝑤′
𝑤′

=
ℎ 0
0 ℎ

0 0
0 0

0 0
0 0

𝑎 𝑏
1 0

𝑥
𝑦
𝑧
1

• This has 𝑤* = 𝑧, 𝑥*𝑤* = ℎ𝑥 or 𝑥* = +"
# , and 𝑦*𝑤* = ℎ𝑦 or 𝑦* = +!

#   (as desired)

• Homogenous coordinates allows the nonlinear
.
$
 to be expressed with linear matrix 

multiplication (so it can be added to the matrix multiplication stack!)



Perspective Projection
• The third equation is 𝑧*𝑤* = 𝑎𝑧 + 𝑏 or 𝑧*𝑧 = 𝑎𝑧 + 𝑏
• New 𝑧 values aren’t required (projected points all lie on the 𝑧 = ℎ image plane)
• However, computing 𝑧′ as a monotonically increasing function of 𝑧 allows it to be used to 
determine occlusions (for alpha channel transparency)

• The near (𝑧 = 𝑛) and far (𝑧 = 𝑓) clipping planes are preserved via 𝑧′ = 𝑛 and 𝑧′ = 𝑓
• 2 equations in 2 unknowns (𝑛% = 𝑎𝑛 + 𝑏 and 𝑓% = 𝑎𝑓 + 𝑏); so, 𝑎 = 𝑛 + 𝑓 and 𝑏 = −𝑓𝑛

• This transforms the viewing frustum into an orthographic volume in screen space


