Triangles

Lots of Triangles

Stanford Bunny 69,451 triangles

David (Digital Michelangelo Project) 56,230,343 triangles

Why Triangles?

- Can focus on specializing/optimizing everything for (just) triangles
- Optimize software and algorithms for just triangles
- Optimize hardware (e.g. GPUs) for just triangles
- Triangles have many inherent benefits:
- Complex objects are well-approximated using enough triangles (piecewise linear convergence)
- Easy to break other polygons into triangles
- Triangles are guaranteed to be planar (unlike quadrilaterals)
- Transformations (from last lecture) only need be applied to triangle vertices
- Robust barycentric interpolation can be used to interpolate information stored on vertices to the interior (of the triangle)
- Etc.

OpenGL

- Blender uses OpenGL for real-time scanline renderering
- OpenGL was started by SGI in 1991 (went into the public domain in 2006)
- It's a drawing API for 2D/3D graphics
- Designed to be implemented mostly on hardware
- Many books and other documentation
- Competitors: DirectX (Microsoft), Metal (Apple), Vulkan (Khronos)
- OpenGL is highly optimized for triangles:

GPUs and Gaming Consoles

- GPUs and Consoles are highly optimized for the graphics geometry pipeline
- They now support ray tracing, as does Blender

Rasterization

- Transform the vertices to screen space (with the matrix stack)
- Find all the pixels inside the 2D screen space triangle - Color those pixels with the RGB-color of the triangle

Aside: Bounding Box Acceleration

- Checking every pixel against every triangle is computationally expensive - Calculate a bounding box around the triangle, with diagonal corners: $\left(\min \left(x_{o}, x_{1}, x_{2}\right), \min \left(y_{0}, y_{1}, y_{2}\right)\right)$ and $\left(\max \left(x_{o}, x_{1}, x_{2}\right), \max \left(y_{0}, y_{1}, y_{2}\right)\right)$
- Then, round coordinates upward to the nearest integer to find all relative pixels

Implicit Equation for a 2D line

- Compute a directed edge vector $e=p_{1}-p_{0}=\left(x_{1}-x_{0}, y_{1}-y_{0}\right)$
- Compute the 2D normal $n=\left(y_{1}-y_{0},-\left(x_{1}-x_{0}\right)\right)$, which doesn't need be unit length
- This 2D normal is "rightward" with respect to the 2D ray direction ("leftward" normal is $-n$)
- Points p lying exactly on the 2D line have: $\left(p-p_{0}\right) \cdot n=0$
- Same way planes are defined in 3D

$$
p_{0}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)
$$

("Leftward") Interior Side of a 2D Ray

- Points p on the interior side of the 2D ray have: $\left(p-p_{0}\right) \cdot n<0$
- Points p exactly on the 2D line have: $\left(p-p_{0}\right) \cdot n=0$
- Points p on the exterior side of the 2D ray have: $\left(p-p_{0}\right) \cdot n>0$
- This same concept can be used for planes in 3D

2D Point Inside a 2D Triangle

Counter-Clockwise vertex ordering (facing camera)

Clockwise vertex ordering (facing away from camera)

- A 2D point is considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
- Vertex ordering matters: backward facing triangles are not rendered, since no points are to the left of all three rays

Boundary Cases

- Pixels lying exactly on a triangle boundary with $\left(p-p_{0}\right) \cdot n=0$ for one of the edges won't be rendered
- Causes gaps between adjacent (edge-sharing) triangles, when an edge overlaps a pixel
- Can fix by using $\left(p-p_{0}\right) \cdot n \leq 0$ instead of $\left(p-p_{0}\right) \cdot n<0$, but both triangles aim to color the same pixel
- Inefficient, and disagreements can cause artifacts
- Instead, render points on the shared edge (consistently) with one triangle or the other:
- Note: edge normals point in opposite directions for two adjacent triangles
- When $n_{x}>0$ or ($n_{x}=0$ and $n_{y}>0$), rasterize pixels on that edge
- When $n_{x}<0$ or ($n_{x}=0$ and $n_{y}<0$), do not rasterize pixels on that edge
- Note: n_{x} and n_{y} are only both zero for degenerate triangle

Overlapping Triangles

- When one object is in front of another, two triangles can aim to color the same pixel
- Recall: screen space projection computes $z^{\prime}=n+f-\frac{f n}{z}$ for occlusion/transparency (via the alpha channel)

- Color each pixel using the triangle that has the smallest z^{\prime} value (at that pixel)
- Need to interpolate z^{\prime} values from triangle vertices to the pixel locations
- In order to do this, we use *proper* screen space barycentric weight interpolation

Linear Interpolation (for functions)

Linearly interpolate between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ via:

$$
y(x)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)+y_{1} \quad \text { or } \quad y(x)=\left(1-\frac{x-x_{1}}{x_{2}-x_{1}}\right) y_{1}+\left(\frac{x-x_{1}}{x_{2}-x_{1}}\right) y_{2}
$$

- Alternatively, $y(t)=(1-t) y_{1}+t y_{2}$ where $t=\frac{x-x_{1}}{x_{2}-x_{1}}$ ranges from 0 to 1 (and can be seen as the fraction of the way from x_{1} to x_{2})

2D/3D Line Segments

- Linearly interpolate between points p_{0} and p_{1} via $p(t)=(1-t) p_{0}+t p_{1}$
$t=\frac{\left\|p-p_{0}\right\|_{2}}{\left\|p_{1}-p_{0}\right\|_{2}}$ is the fraction of the distance from p_{0} to p_{1}
Barycentric weights reformulate this as $p=\alpha_{0} p_{0}+\alpha_{1} p_{1}$ with weights $\alpha_{0}, \alpha_{1} \in[0,1]$ having $\alpha_{0}+\alpha_{1}=1$, i.e. $\alpha_{0}=\frac{\left\|p-p_{1}\right\|_{2}}{\left\|p_{1}-p_{0}\right\|_{2}}$ and $\alpha_{1}=\frac{\left\|p-p_{0}\right\|_{2}}{\left\|p_{1}-p_{0}\right\|_{2}}$
- Barycentric weights express any point p on the segment as a linear combination of the endpoints of the segment

2D/3D Triangles

- Express points on the triangle via $p=\alpha_{0} p_{0}+\alpha_{1} p_{1}+\alpha_{2} p_{2}$ with barycentric weights $\alpha_{0}, \alpha_{1}, \alpha_{2} \in[0,1]$ having $\alpha_{0}+\alpha_{1}+\alpha_{2}=1$
- The weights are computed via areas:

$$
\alpha_{0}=\frac{\operatorname{Area}\left(p, p_{1}, p_{2}\right)}{\operatorname{Area}\left(p_{0}, p_{1}, p_{2}\right)} \quad \text { and } \quad \alpha_{1}=\frac{\operatorname{Area}\left(p_{0}, p, p_{2}\right)}{\operatorname{Area}\left(p_{0}, p_{1}, p_{2}\right)} \quad \text { and } \alpha_{2}=\frac{\operatorname{Area}\left(p_{0}, p_{1}, p\right)}{\operatorname{Area}\left(p_{0}, p_{1}, p_{2}\right)}
$$

- \quad Note (for triangles): $\operatorname{Area}\left(p_{0}, p_{1}, p_{2}\right)=\frac{1}{2}\left\|\overrightarrow{p_{0} p_{1}} \times \overrightarrow{p_{0} p_{2}}\right\|_{2}$

(Alternative) Algebraic Approach

Rewrite $\alpha_{0} p_{0}+\alpha_{1} p_{1}+\alpha_{2} p_{2}=p$ as $\alpha_{0}\left(\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\alpha_{1}\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)+\left(1-\alpha_{0}-\alpha_{1}\right)\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

- Assemble into matrix form: $\left(\begin{array}{ll}x_{0}-x_{2} & x_{1}-x_{2} \\ y_{0}-y_{2} & y_{1}-y_{2} \\ z_{0}-z_{2} & z_{1}-z_{2}\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}=\left(\begin{array}{l}x-x_{2} \\ y-y_{2} \\ z-z_{2}\end{array}\right)$
- In 2 D , this is a 2×2 coefficient matrix; in 3 D , use the normal equations to convert $A\binom{\alpha_{0}}{\alpha_{1}}=b$ into a 2×2 system $A^{T} A\binom{\alpha_{0}}{\alpha_{1}}=A^{T} b$
- The coefficient matrix is rank 1 when the columns (i.e. edges) are colinear, implying infinite solutions for triangles with zero area (one can still embed p on an appropriate edge)
- Invert the 2×2 coefficient matrix to solve the system of 2 equations with 2 unknowns (for α_{0} and α_{1}, and set $\left.\alpha_{2}=1-\alpha_{0}-\alpha_{1}\right)$

Triangle Basis Vectors

- Compute edge vectors $u=p_{0}-p_{2}$ and $v=p_{1}-p_{2}$
- Points in the triangle have the form $p=p_{2}+\beta_{1} u+\beta_{2} v$ with $\beta_{1}, \beta_{2} \in[0,1]$ and $\beta_{1}+\beta_{2} \leq 1$
- Substitutions and collecting terms gives $p=\beta_{1} p_{0}+\beta_{2} p_{1}+\left(1-\beta_{1}-\beta_{2}\right) p_{2}$ implying the equivalence: $\alpha_{0}=\beta_{1}, \alpha_{1}=\beta_{2}, \alpha_{2}=1-\beta_{1}-\beta_{2}$

Perspective Projection

- Projecting triangle vertices p_{0}, p_{1}, p_{2} into screen space gives $p_{0}^{\prime}, p_{1}^{\prime}, p_{2}^{\prime}$
- where $x_{i}^{\prime}=\frac{h x_{i}}{z_{i}}$ and $y_{i}^{\prime}=\frac{h y_{i}}{z_{i}}$ for each vertex's $\left(x_{i}, y_{i}, z_{i}\right)$ values $(i=0,1,2)$
- Given a pixel at a location p^{\prime}, we need to compute the z value of the sub-triangle location that projects to it
- Then, the triangle with the smallest such z value will be used to shade the pixel
- Compute 2D barycentric weights for $p^{\prime}=\alpha_{0}^{\prime} p_{0}^{\prime}+\alpha_{1}^{\prime} p_{1}^{\prime}+\alpha_{2}^{\prime} p_{2}^{\prime}$
- Some point p on the world space triangle projects to the pixel location p^{\prime}
- But $p \neq \alpha_{0}^{\prime} p_{0}+\alpha_{1}^{\prime} p_{1}+\alpha_{2}^{\prime} p_{2}$ because the perspective projection is highly nonlinear

The barycentric weights for the interior of a screen space triangle do not correspondingly describe the interior of its corresponding world space triangle (and vice versa)!

Corresponding Barycentric Weights

- Given a pixel at p^{\prime}, compute its 2D screen space barycentric weights: $\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}$
- Also, compute its 2D triangle basis vectors: $u^{\prime}=p_{0}^{\prime}-p_{2}^{\prime}$ and $v^{\prime}=p_{1}^{\prime}-p_{2}^{\prime}$
- Then $p^{\prime}=p_{2}^{\prime}+\alpha_{0}^{\prime} u^{\prime}+\alpha_{1}^{\prime} v^{\prime}=\binom{x_{2}^{\prime}}{y_{2}^{\prime}}+\left(\begin{array}{ll}u_{1}^{\prime} & v_{1}^{\prime} \\ u_{2}^{\prime} & v_{2}^{\prime}\end{array}\right)\binom{\alpha_{0}^{\prime}}{\alpha_{1}^{\prime}}$
- \quad Some point $p=p_{2}+\alpha_{0}\left(p_{0}-p_{2}\right)+\alpha_{1}\left(p_{1}-p_{2}\right)$ projects to p^{\prime} (barycentric weights for p are unknown)
- The coordinates of p obey: $x=x_{2}+\alpha_{0}\left(x_{0}-x_{2}\right)+\alpha_{1}\left(x_{1}-x_{2}\right), y=y_{2}+\alpha_{0}\left(y_{0}-y_{2}\right)+\alpha_{1}\left(y_{1}-y_{2}\right)$, and $z=z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)$
- Thus, $p^{\prime}=\binom{\frac{h x}{z}}{\frac{h y}{z}}=\binom{h \frac{x_{2}+\alpha_{0}\left(x_{0}-x_{2}\right)+\alpha_{1}\left(x_{1}-x_{2}\right)}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}}{h \frac{y_{2}+\alpha_{0}\left(y_{0}-y_{2}\right)+\alpha_{1}\left(y_{1}-y_{2}\right)}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}}=\binom{\frac{z_{2} x_{2}^{\prime}+\alpha_{0}\left(z_{0} x_{0}^{\prime}-z_{2} x_{2}^{\prime}\right)+\alpha_{1}\left(z_{1} x_{1}^{\prime}-z_{2} x_{2}^{\prime}\right)}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}}{\frac{z_{2} y_{2}^{\prime}+\alpha_{0}\left(z_{0} y_{0}^{\prime}-z_{2} y_{2}^{\prime}\right)+\alpha_{1}\left(z_{1} y_{1}^{\prime}-z_{2} y_{2}^{\prime}\right)}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}}$
$\operatorname{Or} p^{\prime}=\frac{1}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}\left[\binom{z_{2} x_{2}^{\prime}}{z_{2} y_{2}^{\prime}}+\left(\begin{array}{ll}z_{0} x_{0}^{\prime}-z_{2} x_{2}^{\prime} & z_{1} x_{1}^{\prime}-z_{2} x_{2}^{\prime} \\ z_{0} y_{0}^{\prime}-z_{2} y_{2}^{\prime} & z_{1} y_{1}^{\prime}-z_{2} y_{2}^{\prime}\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}\right]$

Corresponding Barycentric Weights

- These two definitions of p^{\prime} can be equated to obtain:

$$
\frac{1}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}\left[\binom{z_{2} x_{2}^{\prime}}{z_{2} y_{2}^{\prime}}+\left(\begin{array}{cc}
z_{0} x_{0}^{\prime}-z_{2} x_{2}^{\prime} & z_{1} x_{1}^{\prime}-z_{2} x_{2}^{\prime} \\
z_{0} y_{0}^{\prime}-z_{2} y_{2}^{\prime} & z_{1} y_{1}^{\prime}-z_{2} y_{2}^{\prime}
\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}\right]=\binom{x_{2}^{\prime}}{y_{2}^{\prime}}+\left(\begin{array}{cc}
u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2}^{\prime} & v_{2}^{\prime}
\end{array}\right)\binom{\alpha_{0}^{\prime}}{\alpha_{1}^{\prime}}
$$

- Bring $\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$ to the left-hand side, and under the brackets as $-\left(z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$ or
equivalently $\binom{-z_{2} x_{2}^{\prime}}{-z_{2} y_{2}^{\prime}}+\left(\begin{array}{cc}-z_{0} x_{2}^{\prime}+z_{2} x_{2}^{\prime} & -z_{1} x_{2}^{\prime}+z_{2} x_{2}^{\prime} \\ -z_{0} y_{2}^{\prime}+z_{2} y_{2}^{\prime} & -z_{1} y_{2}^{\prime}+z_{2} y_{2}^{\prime}\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}$ leads to:

$$
\begin{gathered}
\frac{1}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}\left(\begin{array}{cc}
z_{0} x_{0}^{\prime}-z_{0} x_{2}^{\prime} & z_{1} x_{1}^{\prime}-z_{1} x_{2}^{\prime} \\
z_{0} y_{0}^{\prime}-z_{0} y_{2}^{\prime} & z_{1} y_{1}^{\prime}-z_{1} y_{2}^{\prime}
\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}=\left(\begin{array}{ll}
u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2}^{\prime} & v_{2}^{\prime}
\end{array}\right)\binom{\alpha_{0}^{\prime}}{\alpha_{1}^{\prime}} \\
\frac{1}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}\left(\begin{array}{ll}
u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2}^{\prime} & v_{2}^{\prime}
\end{array}\right)\binom{z_{0} \alpha_{0}}{z_{1} \alpha_{1}}=\left(\begin{array}{ll}
u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2}^{\prime} & v_{2}^{\prime}
\end{array}\right)\binom{\alpha_{0}^{\prime}}{\alpha_{1}^{\prime}} \\
\frac{1}{z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)}\binom{z_{0} \alpha_{0}}{z_{1} \alpha_{1}}=\binom{\alpha_{0}^{\prime}}{\alpha_{1}^{\prime}}
\end{gathered}
$$

- Note: all the terms related to x and y coordinates vanished, leaving dependence only on the z coordinates

Corresponding Barycentric Weights

- Starting from $\binom{z_{0} \alpha_{0}}{z_{1} \alpha_{1}}=\left(z_{2}+\alpha_{0}\left(z_{0}-z_{2}\right)+\alpha_{1}\left(z_{1}-z_{2}\right)\right)\binom{\alpha_{0}^{\prime}}{\alpha_{1}^{\prime}}$
- Rewrite to $\left(\begin{array}{cc}z_{0}-\left(z_{0}-z_{2}\right) \alpha_{0}^{\prime} & -\left(z_{1}-z_{2}\right) \alpha_{0}^{\prime} \\ -\left(z_{0}-z_{2}\right) \alpha_{1}^{\prime} & z_{1}-\left(z_{1}-z_{2}\right) \alpha_{1}^{\prime}\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}=\binom{z_{2} \alpha_{0}^{\prime}}{z_{2} \alpha_{1}^{\prime}}$
- Invert the 2×2 matrix: $\binom{\alpha_{0}}{\alpha_{1}}=\frac{1}{z_{0} z_{1}-z_{1}\left(z_{0}-z_{2}\right) \alpha_{0}^{\prime}-z_{0}\left(z_{1}-z_{2}\right) \alpha_{1}^{\prime}}\left(\begin{array}{cc}z_{1}-\left(z_{1}-z_{2}\right) \alpha_{1}^{\prime} & \left(z_{1}-z_{2}\right) \alpha_{0}^{\prime} \\ \left(z_{0}-z_{2}\right) \alpha_{1}^{\prime} & z_{0}-\left(z_{0}-z_{2}\right) \alpha_{0}^{\prime}\end{array}\right)\binom{z_{2} \alpha_{0}^{\prime}}{z_{2} \alpha_{1}^{\prime}}$
- Simplify: $\binom{\alpha_{0}}{\alpha_{1}}=\frac{1}{z_{1} z_{2} \alpha_{0}^{\prime}+z_{0} z_{2} \alpha_{1}^{\prime}+z_{0} z_{1} \alpha_{2}^{\prime}}\binom{z_{1} z_{2} \alpha_{0}^{\prime}}{z_{0} z_{2} \alpha_{1}^{\prime}}$
- In summary, given barycentric coordinates of the pixel, α_{0}^{\prime} and α_{1}^{\prime}, we can compute:

$$
\alpha_{0}=\frac{z_{1} z_{2} \alpha_{0}^{\prime}}{z_{1} z_{2} \alpha_{0}^{\prime}+z_{0} z_{2} \alpha_{1}^{\prime}+z_{0} z_{1} \alpha_{2}^{\prime}} \quad \text { and } \quad \alpha_{1}=\frac{z_{0} z_{2} \alpha_{1}^{\prime}}{z_{1} z_{2} \alpha_{0}^{\prime}+z_{0} z_{2} \alpha_{1}^{\prime}+z_{0} z_{1} \alpha_{2}^{\prime}}
$$

- Then α_{0} and α_{1} (and $\alpha_{2}=\frac{z_{0} z_{1} \alpha_{2}^{\prime}}{z_{1} z_{2} \alpha_{0}^{\prime}+z_{0} z_{2} \alpha_{1}^{\prime}+z_{0} z_{1} \alpha_{2}^{\prime}}$) can be used to find the corresponding point p on the world space triangle
- This also allows us to compute $z=\alpha_{0} z_{0}+\alpha_{1} z_{1}+\alpha_{2} z_{2}$ at the point p

Depth Buffer

- \quad Since $z=\alpha_{0} z_{0}+\alpha_{1} z_{1}+\alpha_{2} z_{2}=\frac{z_{0} z_{1} z_{2}}{z_{1} z_{2} \alpha_{0}^{\prime}+z_{0} z_{2} \alpha_{1}^{\prime}+z_{0} z_{1} \alpha_{2}^{\prime}}$, we have $\frac{1}{z}=\alpha_{0}^{\prime}\left(\frac{1}{z_{0}}\right)+\alpha_{1}^{\prime}\left(\frac{1}{z_{1}}\right)+\alpha_{2}^{\prime}\left(\frac{1}{z_{2}}\right)$
- That is, $\frac{1}{z}$ can be interpolated correctly with screen space barycentric weights (even though z cannot be)
- Recall, for each vertex: $z_{i}^{\prime}=n+f-\frac{f n}{z_{i}}$, or $\frac{1}{z_{i}}=\frac{n+f-z_{i}^{\prime}}{f n}$
- This leads to $\frac{1}{z}=\frac{n+f-\left(\alpha_{0}^{\prime} z_{0}^{\prime}+\alpha_{1}^{\prime} z_{1}^{\prime}+\alpha_{2}^{\prime} z_{2}^{\prime}\right)}{f n}=\frac{n+f-z^{\prime}}{f n}$ where z^{\prime} is barycentrically interpolated - That is, $z^{\prime}=n+f-\frac{f n}{z}$ for every point on the triangle (not just the vertices)
- \quad ince $\frac{d z^{\prime}}{d z}=\frac{f n}{z^{2}}>0$, comparing interpolated z^{\prime} values is as valid as comparing z values

Ray Tracing

- Ray Tracing works very differently than the Scanline Rendering just discussed
- The ray tracer creates a ray going through a pixel, and subsequently intersects that ray with triangles in world space
- Since the ray tracer intrinsically operates in world space (not screen space), it never uses screen space barycentric coordinates
- Operating in world space is a huge advantage for the ray tracer when it comes to image quality, since it can thoroughly look around in world space to figure out what's going on
- A scanline renderer operates in screen space, and as such has more limited information - On the other hand, the limited capabilities of a scanline renderer make it a fantastic candidate for real time implementation on hardware
- Only recently have hardware implementations of some aspects of ray tracing become more feasible!

Lighting and Shading

- After identifying that a pixel is inside a triangle, its color can be set to the color of the triangle
- This ignores all the nuances of how light works (we'll discuss that later)
- If you rendered a sphere using this simplistic approach, it would look like this:

