Triangles
Lots of Triangles

Stanford Bunny
69,451 triangles

David (Digital Michelangelo Project)
56,230,343 triangles
Why Triangles?

• Can focus on specializing/optimizing everything for (just) triangles
• Optimize software and algorithms for just triangles
• Optimize hardware (e.g. GPUs) for just triangles

• Triangles have many inherent benefits:
 • Complex objects are well-approximated (piecewise linear convergence) using enough triangles
 • Easy to break other polygons into triangles
 • Triangles are guaranteed to be planar (unlike quadrilaterals)
 • Transformations (from last lecture) only need be applied to triangle vertices
 • Barycentric interpolation can be used to robustly interpolate information from the triangle’s vertices to the triangle’s interior
 • Etc.
OpenGL

• Blender uses OpenGL for its real-time scanline renderer

• OpenGL was started by SGI in 1991 (went into the public domain in 2006)
• It's a drawing API for 2D/3D graphics
• Designed to be implemented mostly on hardware
• Many books and other documentation
• Main competitor is DirectX

• OpenGL is highly optimized for triangles:
GPUs and Gaming Consoles

• GPUs and Consoles are highly optimized for the graphics geometry pipeline
 • They now support ray tracing, as does Blender
Rasterization

- Transform the vertices to screen space (with the matrix stack)
- Find all the pixels inside the 2D screen space triangle
- Color those pixels with the RGB-color of the triangle
Aside: Bounding Box Acceleration

- Checking every pixel against every triangle is computationally expensive
- Calculate a bounding box around the triangle, with diagonal corners:
 \[(\min(x_o, x_1, x_2), \min(y_0, y_1, y_2)) \text{ and } (\max(x_o, x_1, x_2), \max(y_0, y_1, y_2))\]
- Then, round coordinates upward to the nearest integer to find all relative pixels
Implicit Equation for a 2D line

- Compute a directed edge vector \(e = p_1 - p_0 = (x_1 - x_0, y_1 - y_0) \)
- Compute the 2D normal \(n = (y_1 - y_0, -(x_1 - x_0)) \), which doesn’t need be unit length
- This 2D normal is “rightward” with respect to the 2D ray direction (“leftward” normal is \(-n\))
- Points \(p \) lying exactly on the 2D line have: \((p - p_0) \cdot n = 0\)
 - Same way planes are defined in 3D
("Leftward") Interior Side of a 2D Ray

- Points p on the **interior** side of the 2D ray have: $(p - p_0) \cdot n < 0$
- Points p exactly on the 2D line have: $(p - p_0) \cdot n = 0$
- Points p on the exterior side of the 2D ray have: $(p - p_0) \cdot n > 0$
- This same concept can be used for planes in 3D

\[
(p - p_0) \cdot n > 0 \quad \text{"exterior" side}
\]

\[
(p - p_0) \cdot n < 0 \quad \text{"interior" side}
\]

$p_0 = (x_0, y_0)$

$p_1 = (x_1, y_1)$
2D Point Inside a 2D Triangle

- A 2D point is considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
- **Vertex ordering matters**: backward facing triangles are not rendered, since no points are to the left of all three rays

Counter-Clockwise vertex ordering (facing camera)

Clockwise vertex ordering (facing away from camera)
Boundary Cases

- Pixels lying exactly on a triangle boundary with \((p - p_0) \cdot n = 0\) for one of the edges won’t be rendered
 - Causes gaps between adjacent (sharing an edge) triangles, when an edge overlaps a pixel
- Changing the inside test to \((p - p_0) \cdot n \leq 0\) instead of \((p - p_0) \cdot n < 0\) fixes this, but both triangles aim to color the same pixel
 - Inefficient, and disagreements can cause artifacts
- Instead, render points on the shared edge (consistently) with one triangle or the other:
 - Note: edge normals point in opposite directions for two adjacent triangles
 - When \(n_x > 0\) or \((n_x = 0 \text{ and } n_y > 0)\), rasterize pixels on that edge
 - When \(n_x < 0\) or \((n_x = 0 \text{ and } n_y < 0)\), do not rasterize pixels on that edge
 - Note: \(n_x\) and \(n_y\) are never both zero (unless the triangle is degenerate)
Overlapping Triangles

- If one object is in front of another, two triangles may both aim to color the same pixel.

- Recall (last lecture): screen space projection computes $z' = n + f - \frac{fn}{z}$ for use in occlusion/transparency (via the alpha channel).

- Color each pixel using the triangle that gives the smallest z' value (for that pixel).

- This requires interpolating z' values from triangle vertices to the pixel locations.

- In order to do this, we use *proper* screen space barycentric weight interpolation.
Linear Interpolation (for functions)

- Given two points \((x_1, y_1)\) and \((x_2, y_2)\), linearly interpolate between them via:
 \[
 y(x) = \left(\frac{y_2 - y_1}{x_2 - x_1} \right) (x - x_1) + y_1 \quad \text{or} \quad y(x) = \left(1 - \frac{x - x_1}{x_2 - x_1} \right) y_1 + \left(\frac{x - x_1}{x_2 - x_1} \right) y_2
 \]
- Alternatively, \(y(t) = (1 - t)y_1 + ty_2\) where \(t = \frac{x - x_1}{x_2 - x_1}\) ranges from 0 to 1 (and can be seen as the fraction of the way from \(x_1\) to \(x_2\))
2D/3D Line Segments

- Given endpoints p_0 and p_1, intermediate points are defined based on the fraction of the distance that point is from p_0 to p_1 via $p(t) = (1 - t)p_0 + tp_1$

- $t = \frac{\|p - p_0\|_2}{\|p_1 - p_0\|_2}$, since p_0 and p_1 are multidimensional points

- **Barycentric weights** reformulate this using weights $\alpha_0, \alpha_1 \in [0,1]$ where $\alpha_0 + \alpha_1 = 1$ and $p = \alpha_0 p_0 + \alpha_1 p_1$, i.e. $\alpha_0 = \frac{\|p - p_1\|_2}{\|p_1 - p_0\|_2}$ and $\alpha_1 = \frac{\|p - p_0\|_2}{\|p_1 - p_0\|_2}$

- Barycentric weights express any point p on the segment as a linear combination of the endpoints of the segment
2D/3D Triangles

- Given endpoints p_0, p_1, p_2, compute barycentric weights $\alpha_0, \alpha_1, \alpha_2 \in [0,1]$ with $\alpha_0 + \alpha_1 + \alpha_2 = 1$ and $p = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$

- The weights are computed via areas:

 $$
 \alpha_0 = \frac{\text{Area}(p,p_1,p_2)}{\text{Area}(p_0,p_1,p_2)} \quad \text{and} \quad \alpha_1 = \frac{\text{Area}(p_0,p,p_2)}{\text{Area}(p_0,p_1,p_2)} \quad \text{and} \quad \alpha_2 = \frac{\text{Area}(p_0,p_1,p)}{\text{Area}(p_0,p_1,p_2)}
 $$

- Note the triangle area formula: $\text{Area}(p_0,p_1,p_2) = \frac{1}{2} \| \overrightarrow{p_0p_1} \times \overrightarrow{p_0p_2} \|_2$
(Alternative) Algebraic Approach

- Rewrite $\alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2 = p$ as $\alpha_0 \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \alpha_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + (1 - \alpha_0 - \alpha_1) \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- Assemble into matrix form: $\begin{pmatrix} x_0 - x_2 & x_1 - x_2 \\ y_0 - y_2 & y_1 - y_2 \\ z_0 - z_2 & z_1 - z_2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} x - x_2 \\ y - y_2 \\ z - z_2 \end{pmatrix}$

- In 2D, this is a 2x2 coefficient matrix, but in 3D one has to use the normal equations to obtain a 2x2 system, i.e. convert $A \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = b$ to $A^T A \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = A^T b$

- The coefficient matrix is rank 1 when the two vectors are colinear, implying infinite solutions for triangles with zero area (one can still embed p on an appropriate edge)

- Otherwise, invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns (for α_0 and α_1, and set $\alpha_2 = 1 - \alpha_0 - \alpha_1$)
Triangle Basis Vectors

- Compute edge vectors \(u = p_0 - p_2 \) and \(v = p_1 - p_2 \)
- Any point \(p \) interior to the triangle can be written as \(p = p_2 + \beta_1 u + \beta_2 v \) with \(\beta_1, \beta_2 \in [0,1] \) and \(\beta_1 + \beta_2 \leq 1 \)
- Substitutions and collecting terms gives \(p = \beta_1 p_0 + \beta_2 p_1 + (1 - \beta_1 - \beta_2) p_2 \) implying the equivalence: \(\alpha_0 = \beta_1, \ \alpha_1 = \beta_2, \ \alpha_2 = 1 - \beta_1 - \beta_2 \)
Perspective Projection

- Triangle vertices p_0, p_1, p_2 are projected into screen space (vertex by vertex) to obtain p'_0, p'_1, p'_2 via $x'_i = \frac{hx_i}{z_i}$ and $y'_i = \frac{hy_i}{z_i}$ for each vertex’s (x_i, y_i, z_i) values ($i = 0, 1, 2$)
- Given a pixel at a location p', we want to know the z value of the sub-triangle location that projects to it
- We want to use the triangle with the smallest such z value (when triangles overlap)
- Can compute barycentric weights for $p' = \alpha'_0 p'_0 + \alpha'_1 p'_1 + \alpha'_2 p'_2$
- Some point p on the world space triangle projects to the pixel location p'
- But $p \neq \alpha'_0 p'_0 + \alpha'_1 p'_1 + \alpha'_2 p'_2$ because the perspective projection is highly nonlinear

- The barycentric weights for the interior of a screen space triangle do not correspondingly describe the interior of its corresponding world space triangle (and vice versa)
Corresponding Barycentric Weights

- Given a pixel at \(p' \), compute its screen space barycentric weights: \(\alpha'_0, \alpha'_1, \alpha'_2 \)
- Also, compute its 2D triangle basis vectors: \(u' = p'_0 - p'_2 \) and \(v' = p'_1 - p'_2 \)
- Then \(p' = p'_2 + \alpha'_0 u' + \alpha'_1 v' = \begin{pmatrix} x'_2 \\ y'_2 \end{pmatrix} + \begin{pmatrix} u'_1 \\ v'_1 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix} \)

- Some point \(p = p_2 + \alpha_0(p_0 - p_2) + \alpha_1(p_1 - p_2) \) projects to \(p' \) (barycentric weights for \(p \) are unknown)
- The coordinates of \(p \) obey: \(x = x_2 + \alpha_0(x_0 - x_2) + \alpha_1(x_1 - x_2) \), \(y = y_2 + \alpha_0(y_0 - y_2) + \alpha_1(y_1 - y_2) \), and \(z = z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) \)
- Thus, \(p' = \begin{pmatrix} h x \\ h y \\ z \end{pmatrix} = \begin{pmatrix} x_2 + \alpha_0(x_0 - x_2) + \alpha_1(x_1 - x_2) \\ y_2 + \alpha_0(y_0 - y_2) + \alpha_1(y_1 - y_2) \\ z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) \end{pmatrix} = \begin{pmatrix} \frac{z_2 x'_2 + \alpha_0(z_0 x'_0 - z_2 x'_2) + \alpha_1(z_1 x'_1 - z_2 x'_2)}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \\ \frac{z_2 y'_2 + \alpha_0(z_0 y'_0 - z_2 y'_2) + \alpha_1(z_1 y'_1 - z_2 y'_2)}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \end{pmatrix} \)

- Or \(p' = \frac{1}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \left[\begin{pmatrix} z_2 x'_2 \\ z_2 y'_2 \end{pmatrix} + \begin{pmatrix} z_0 x'_0 - z_2 x'_2 \\ z_0 y'_0 - z_2 y'_2 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix} \right] \)
Corresponding Barycentric Weights

- These two definitions of p' can be equated to obtain:

\[
\frac{1}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \left[\begin{pmatrix} z_2 & x_2' \\ y_2' \end{pmatrix} + \begin{pmatrix} z_0 & x_0' - z_2 x_2' \\ z_0 & y_0' - z_2 y_2' \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} \right] = \begin{pmatrix} x'_2 \\ y'_2 \end{pmatrix} + \begin{pmatrix} u'_2 \\ v'_2 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix}
\]

- Bring \(\begin{pmatrix} x'_2 \\ y'_2 \end{pmatrix} \) to the left-hand side, and under the brackets as \(- (z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)) \begin{pmatrix} x'_2 \\ y'_2 \end{pmatrix} \) or equivalently \(\begin{pmatrix} -z_2 x'_2 \\ -z_2 y'_2 \end{pmatrix} + \begin{pmatrix} -z_0 x'_2 + z_2 x'_2 \\ -z_0 y'_2 + z_2 y'_2 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix} \) leads to:

\[
\frac{1}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \begin{pmatrix} z_0 x'_0 - z_0 x'_2 \\ z_0 y'_0 - z_0 y'_2 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix} = \begin{pmatrix} u'_1 \\ v'_1 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix}
\]

\[
\frac{1}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \begin{pmatrix} u'_1 \\ v'_1 \end{pmatrix} \begin{pmatrix} z_0 \alpha'_0 \\ \alpha'_1 \end{pmatrix} = \begin{pmatrix} u'_1 \\ v'_1 \end{pmatrix} \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix}
\]

\[
\frac{1}{z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)} \begin{pmatrix} z_0 \alpha'_0 \\ \alpha'_1 \end{pmatrix} = \begin{pmatrix} \alpha'_0 \\ \alpha'_1 \end{pmatrix}
\]

- Note: all the terms related to x and y coordinates vanished, leaving dependence only on the z coordinates.
Corresponding Barycentric Weights

- Starting from \(\begin{pmatrix} z_0 \alpha_0 \\ z_1 \alpha_1 \end{pmatrix} = (z_2 + \alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2)) \begin{pmatrix} \alpha_0' \\ \alpha_1' \end{pmatrix} \)
 - Rewrite to \(\begin{pmatrix} z_0 - (z_0 - z_2)\alpha_0' \\ -(z_0 - z_2)\alpha_1' \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} z_2 \alpha_0' \\ z_2 \alpha_1' \end{pmatrix} \)
 - Invert the 2x2 matrix: \(\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \frac{1}{z_0 z_1 - z_1 (z_0 - z_2) \alpha_0' - z_0 (z_1 - z_2) \alpha_1'} \begin{pmatrix} z_1 - (z_1 - z_2)\alpha_1' \\ z_0 - (z_0 - z_2)\alpha_0' \end{pmatrix} \begin{pmatrix} z_2 \alpha_0' \\ z_2 \alpha_1' \end{pmatrix} \)
 - Simplify: \(\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \frac{1}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'} \begin{pmatrix} z_1 z_2 \alpha_0' \\ z_0 z_2 \alpha_1' \end{pmatrix} \)

- So, given barycentric coordinates of the pixel, \(\alpha_0' \) and \(\alpha_1' \), we can compute:

 \[\alpha_0 = \frac{z_1 z_2 \alpha_0'}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'} \quad \text{and} \quad \alpha_1 = \frac{z_0 z_2 \alpha_1'}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'} \]

- Then \(\alpha_0 \) and \(\alpha_1 \) (and \(\alpha_2 = \frac{z_0 z_1 \alpha_2'}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'} \)) can be used to find the corresponding point \(p \) on the world space triangle.

- In particular, we want \(z = \alpha_0 z_0 + \alpha_1 z_1 + \alpha_2 z_2 \)
Summary

- Express the pixel p' terms of its screen space barycentric weights: $\alpha_0', \alpha_1', \alpha_2'$
- Express the point p that projects to p' in terms of unknown world space barycentric weights: $\alpha_0, \alpha_1, \alpha_2$
- Project p into screen space and set the result equal to p'
- Solve for $\alpha_0, \alpha_1, \alpha_2$ to obtain:

$$\alpha_0 = \frac{z_1 z_2 \alpha_0'}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'}$$

$$\alpha_1 = \frac{z_0 z_2 \alpha_1'}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'}$$

$$\alpha_2 = \frac{z_0 z_1 \alpha_2'}{z_1 z_2 \alpha_0' + z_0 z_2 \alpha_1' + z_0 z_1 \alpha_2'}$$
Depth Buffer

Since \(z = \alpha_0 z_0 + \alpha_1 z_1 + \alpha_2 z_2 = \frac{z_0 z_1 z_2}{z_1 z_2 \alpha'_0 + z_0 z_2 \alpha'_1 + z_0 z_1 \alpha'_2} \), we have \(\frac{1}{z} = \alpha'_0 \left(\frac{1}{z_0} \right) + \alpha'_1 \left(\frac{1}{z_1} \right) + \alpha'_2 \left(\frac{1}{z_2} \right) \)

That is, \(\frac{1}{z} \) can be barycentrically interpolated in screen space.

Recall, for each vertex: \(z'_i = n + f - \frac{f n}{z_i} \), or \(\frac{1}{z_i} = \frac{n+f-z'_i}{f n} \).

This means that \(\frac{1}{z} = \frac{n+f-(\alpha'_0 z'_0 + \alpha'_1 z'_1 + \alpha'_2 z'_2)}{f n} \), and thus \(z = \frac{f n}{n+f-(\alpha'_0 z'_0 + \alpha'_1 z'_1 + \alpha'_2 z'_2)} = \frac{f n}{n+f-z'} \).

That is, the interpolated \(z' \) and corresponding \(z \) value obey the same pointwise equation: \(z' = n + f - \frac{f n}{z} \).

BTW: \(\frac{d z}{d z'} = \frac{f n}{(n+f-z')^2} > 0 \) implies that comparing interpolated \(z' \) values is as valid as comparing \(z \) values.
Ray Tracing

• Ray Tracing works very differently than the Scanline Rendering just discussed
• The ray tracer creates a ray going through a pixel, and subsequently intersects that ray with triangles in world space
• Since the ray tracer intrinsically operates in world space, as opposed to screen space, it can ignore screen space barycentric coordinates
• Operating in world space is a huge advantage for the ray tracer when it comes to image quality, since it can thoroughly look around in world space to figure out what’s going on

• A scanline renderer operates in screen space, and as such has more limited information
• On the other hand, the limited capabilities of a scanline renderer make it a fantastic candidate for real time implementation on hardware

• Only recently have hardware implementations of some aspects of ray tracing become more feasible!
Lighting and Shading

• After identifying that a pixel is inside a triangle, its color can be set to the color of the triangle.
• This ignores all the nuances of how light works (we’ll discuss that next week).
• If you rendered a sphere using this simplistic approach, it would look like this: