Ray Tracing

Constructing Rays

- For each pixel, create a ray and intersect it with objects in the scene
- The first intersection is used to determine a color for the pixel
- The ray is $R(t)=A+(P-A) t$ where A is the aperture and P is the pixel location
- The ray is defined by $t \in[0, \infty)$, although only $t \in\left[1, t_{f a r}\right]$ will be inside the viewing frustum
- We only care about the first intersection with $t \geq 1$

Parallelization

- Ray tracing is a per pixel operation (scanline rendering is a per triangle operation)
- Ray tracing is inherently parallel (the ray for each pixel is independent of the rays for other pixels)
- Can utilize modern parallel CPUs/Clusters/GPUs to significantly accelerate ray tracing
- Threading (e.g., Pthread, OpenMP) distributes rays across CPU cores
- Message Passing Interface (MPI) distributes rays across CPUs on different machines (unshared memory)
- OptiX/CUDA distributes rays on the GPU
- Memory coherency is important, when distributing rays to various threads/processors
- Assign spatially neighboring rays (passing through neighboring pixels) to the same core/processor
- These rays tend to intersect with the same objects in the scene, and thus tend to access the same memory
- For the sake of comparison: Scanline rendering is a per triangle operation, and is parallelized to handle one triangle at a time (usually on a GPU)

Ray-Triangle Intersection

- Given the enormous number of triangles, many approaches have been implemented and tested in various software/hardware settings:
- Triangles are contained in planes, so it can be useful to look at Ray-Plane intersections first
- A Ray-Plane intersection yields a point, and a subsequent test determines whether that point is inside (or outside) the triangle
- Both the triangle and the point can be projected into 2D, and the 2D triangle rasterization test (to the left of all 3 rays, discussed last week) can be used to determine "inside"
- Can project can into the $x y, x z, y z$ plane by merely dropping the z, y, x coordinate (respectively) from the triangle vertices and the point
- Most robust to drop the coordinate with the largest component in the triangle's normal (so that the projected triangle has maximal area)
- Alternatively, there is a fully 3 D version of the 2 D rasterization
- One can skip the Ray-Plane intersection and consider the Ray-Triangle intersection directly
- This is similar to how ray tracing works for non-triangle geometry (ray tracers handle non-triangle geometry better than scanline rendering does)

Ray-Plane Intersection

- A plane is defined by a point p_{o} (on it) and a normal direction N
- A point p is on the plane if $\left(p-p_{o}\right) \cdot N=0$
- A ray $R(t)=A+(P-A) t$ intersects the plane when $\left(R(t)-p_{o}\right) \cdot N=0$ for some $t \geq 0$
- That is, $\left(A+(P-A) t-p_{o}\right) \cdot N=0$ or $\left(A-p_{o}\right) \cdot N+(P-A) \cdot N t=0$
- So, $t=\frac{\left(p_{o}-A\right) \cdot N}{(P-A) \cdot N}$
- Note: The length of N cancels (so it need not be unit length)
- As always, if $t \notin\left[1, t_{f a r}\right]$ or another intersection has a smaller t value, then this intersection is ignored
- Note: a (non-unit length) triangle normal can be computed by taking the cross product of any two edges (as long as the triangle does not have zero area)
- Note: Any triangle vertex can be used as a point on the plane

3D Point Inside a 3D Triangle

- Given $t_{\text {int }}=\frac{\left(p_{o}-A\right) \cdot N}{(P-A) \cdot N}$, evaluate $R\left(t_{\text {int }}\right)=R_{o}$ to find the intersection point
- Given edge $e=p_{1}-p_{0}$, compute its normal $n=\left(p_{0}-p_{2}\right)-\left(\left(p_{0}-p_{2}\right) \cdot \frac{e}{\|e\|}\right) \frac{e}{\|e\|}$
- R_{o} is interior to e when $\left(R_{o}-p_{0}\right) \cdot n<0$
- If R_{o} is interior to all three edges, it is interior to the triangle

Recall: Triangle Basis Vectors

Compute edge vectors $u=p_{0}-p_{2}$ and $v=p_{1}-p_{2}$

- Any point p interior to the triangle can be written as $p=p_{2}+\beta_{1} u+\beta_{2} v$ with $\beta_{1}, \beta_{2} \in[0,1]$ and $\beta_{1}+\beta_{2} \leq 1$
- Substitutions and collecting terms gives $p=\beta_{1} p_{0}+\beta_{2} p_{1}+\left(1-\beta_{1}-\beta_{2}\right) p_{2}$ implying the equivalence: $\alpha_{0}=\beta_{1}, \alpha_{1}=\beta_{2}, \alpha_{2}=1-\beta_{1}-\beta_{2}$

Direct Ray-Triangle Intersection

- Triangle Basis Vectors: $p=p_{2}+\beta_{1} u+\beta_{2} v$ with $\beta_{1}, \beta_{2} \in[0,1]$ and $\beta_{1}+\beta_{2} \leq 1$
- Points on the ray have $R(t)=A+(P-A) t$
- An intersection point has $A+(P-A) t=p_{2}+\beta_{1} u+\beta_{2} v$
- $\operatorname{Or}\left(\begin{array}{lll}u & v & A-P\end{array}\right)\left(\begin{array}{c}\beta_{1} \\ \beta_{2} \\ t\end{array}\right)=A-p_{2}$ where $\left(\begin{array}{lll}u & v & A-P\end{array}\right)$ is a 3×3 matrix and $A-p_{2}$ is a 3×1 vector (3 equations with 3 unknowns)
- This 3×3 system is degenerate when the columns of the 3×3 matrix are not full rank
- That happens when the triangle has zero area or the ray direction, $P-A$, is perpendicular to the plane's normal
- Otherwise, there is a unique solution
- $R\left(t_{\text {int }}\right)$ is inside the triangle, when that unique solution has: $\beta_{1}, \beta_{2} \in[0,1]$ and $\beta_{1}+\beta_{2} \leq 1$
- As always, if $t \notin\left[1, t_{f a r}\right]$ or another intersection has a smaller t value, then this intersection is ignored

Solving with Cramer's Rule

- Solving the 3×3 system with Cramer's Rule allows for code optimization:
- First compute the determinant of the 3×3 coefficient matrix $\Delta=\left|\left(\begin{array}{lll}u & v & A-P\end{array}\right)\right|$, which is nonzero when a solution exists
- Then compute $t=\frac{\Delta_{t}}{\Delta}$ where the numerator is the determinant: $\Delta_{t}=\left|\left(\begin{array}{lll}u & v & A-p_{0}\end{array}\right)\right|$
- When $t \notin\left[1, t_{f a r}\right]$ or there is an earlier intersection, can quit early (ignoring this intersection)
- Compute $\beta_{1}=\frac{\Delta_{\beta_{1}}}{\Delta}$ where $\Delta_{\beta_{1}}=\left\lvert\,\left(\begin{array}{lll}A-p_{0} & v & A-P) \mid\end{array}\right.\right.$
- When $\beta_{1} \notin[0,1]$, can quit early
- Compute $\beta_{2}=\frac{\Delta_{\beta_{2}}}{\Delta}$ where $\Delta_{\beta_{2}}=\left|\left(\begin{array}{lll}u & A-p_{0} & A-P\end{array}\right)\right|$
- When $\beta_{2} \in\left[0,1-\beta_{1}\right]$, the intersection is marked as true

Ray-Object Intersections

- As long as a ray-geometry intersection routine can be written, ray tracing can be applied to any representation of geometry
- This is in contrast to scanline rendering where objects need to be turned into triangles
- In addition to triangle meshes, ray tracers often use: analytic descriptions of geometry, implicitly defined surfaces, parametric surfaces, etc.
- The surfaces of many objects can be written as functions
- E.g., $f(p)=0$ if and only if p is on the surface (e.g. the equation for a plane)
- Sometimes there are additional constraints (such as on the barycentric weights for triangles)
- One quite useful class of such objects are implicit surfaces (covered later in the class)
- Ray-object intersection routines often proceed down a similar path:
- substitute the ray equation in for the point, i.e. $f(R(t))=0$
- solve for t
- check the solution against any additional constraints

Ray-Sphere Intersections

- A point p is on a sphere with center C and radius r when $\|p-C\|_{2}=r$
- Or (squaring both sides), when $(p-C) \cdot(p-C)=r^{2}$
- Substitute $R(t)=A+(P-A) t$ in for p to get a quadratic equation in t :

$$
(P-A) \cdot(P-A) t^{2}+2(P-A) \cdot(A-C) t+(A-C) \cdot(A-C)-r^{2}=0
$$

- When the discriminant of this quadratic equation is positive, there are two solutions (choose the one the ray hits first)
- When the discriminant is zero, there is one solution (the ray tangentially grazes the sphere)
- When the discriminant is negative, there are no solutions

Transformed Objects

- Geometry is often stored/represented in a convenient object space
- The object space can make the geometry simpler to deal with
- E.g., spheres can be centered at the origin, objects are not sheared, coordinates may be non-dimensionalized for numerical robustness, there may be (auxiliary) geometric acceleration structures, more convenient color and texture information, etc.
- We often prefer to ray trace in this convenient object space, rather than world space
- Transform the ray into object space and find the ray-object intersection, then transform the relevant information back to world space

$\boldsymbol{M} \cdot \boldsymbol{R}_{\text {object }}\left(\boldsymbol{t}_{\text {int }}\right)$

Aside: Code Acceleration

- Ray-Object intersections can be expensive
- So, put complex objects inside simpler objects, and first test for intersections against the simpler object (potentially skipping tests against the complex object)
- Simple bounding volumes: spheres, axis-aligned bounding boxes (AABB), or oriented bounding boxes (OBB)

Aside: Code Acceleration

- For complex objects, build a hierarchical tree structure in object space
- The lowest levels of the tree contain the primitives used for intersections (and have simple geometry bounding them); then, these are combined hierarchically into a $\log n$ height tree - Starting at the top of a Bounding Volume Hierarchy (BVH), one can prune out many nonessential (missed) ray-object collision checks

Aside: Code Acceleration

- Instead of a bottom-up bounding volume hierarchy approach, octrees and K-D trees take a top-down approach to hierarchically partitioning objects (and space)

Normals

- Objects tilted towards the light are bombarded with more photons than those tilted away from the light
- The surface normal at the point $R\left(t_{i n t}\right)$ can be used to approximate a plane (locally) tangent to the surface
- Compare the (unit) incoming light direction \widehat{L} with the (unit) normal \widehat{N} to approximate the titling angle via: $-\widehat{L} \cdot \widehat{N}=\cos \theta$
- Incoming light with intensity I is scaled down to $I \max (0, \cos \theta)$
- the max with 0 prunes surfaces facing away from the light
- If (k_{R}, k_{G}, k_{B}) is the RGB color of a triangle ($k_{R}, k_{G}, k_{B} \in[0,1]$ are reflection coefficients), then the pixel color is $\left(k_{R}, k_{G}, k_{B}\right) I \max (0, \cos \theta)$

Ambient vs. Diffuse Shading

- Ambient shading colors a pixel when its ray intersects the object
- Diffuse shading attenuates object color based on how far the unit normal is tilted away from the incoming light (note how your eyes/brain imagine a 3D shape)

Ambient

Diffuse

Computing Unit Normals

- The unit normal to a plane is used in the plane's definition, and is thus readily accessible
- although it might need to be normalized to unit length
- The unit normal to a triangle can be computed by normalizing the cross product of two edges - Be careful with the edge ordering to ensure that the normal points outwards from the object (as opposed to inwards)
- For other objects: Need to provide a function that returns an (outward) unit normal for any point of intersection
- E.g., a sphere with intersection point $R\left(t_{i n t}\right)$, has an (outward) unit normal of:

$$
\widehat{N}=\frac{R\left(t_{\text {int }}\right)-C}{\left\|R\left(t_{\text {int }}\right)-C\right\|_{2}}
$$

Transformed Objects

- When ray tracing geometry in object space, the object space normal needs to be transformed back into world space along with the intersection point
- Let u and v be edge vectors of a triangle in object space
- Let $M u$ and $M v$ be their corresponding world space versions
- The object space normal \widehat{N} is transformed to world space via $M^{-T} \widehat{N}$
- Note: $M u \cdot M^{-T} \widehat{N}=u^{T} M^{T} M^{-T} \widehat{N}=u^{T} \widehat{N}=u \cdot \widehat{N}=0$, and $M v \cdot M^{-T} \widehat{N}=0$
- Note: $M^{-T} \widehat{N}$ needs to be normalized to make it unit length
- Careful, DO NOT USE $M \widehat{N}$ as the world space normal:

Shadows

- The incoming light intensity I needs to be reduced, when photons are blocked by other objects or parts of the same object
- Shadow rays determine whether photons from a light source are able to hit a point
- A shadow ray is cast from the intersection point $R\left(t_{\text {int }}\right)$ in the direction of the light $-\hat{L}$,

$$
S(t)=R\left(t_{\text {int }}\right)-\hat{L} t \text { with } t \in\left(0, t_{\text {light }}\right)
$$

- If no intersections are found in ($0, t_{\text {light }}$), then the light source is unobscured
- Otherwise, the point is shadowed, and the light source is not used to color the pixel
- Note: every light source is checked with a separate shadow ray
- Note: low intensity ambient shading is often used for points completely shadowed (so that they are not completely black)

Spurious Self-Occlusion

- $t=0$ is not included in $t \in\left(0, t_{\text {light }}\right)$, to avoid incorrect self-intersections near $R\left(t_{\text {int }}\right)$
- This can still happen because of issues with numerical precision
- Note: Some shadow rays should self-intersect (such as those on the back-side of an object)

correct shadowing

Spurious Self-Occlusion

- A simple solution is to use $t \in\left(\epsilon, t_{\text {light }}\right)$ for some $\epsilon>0$ large enough to avoid numerical precision issues
- This works well for many cases
- However, grazing shadow rays may still incorrectly re-intersect the object

Spurious Self-Occlusion

- Another option is to perturb the starting point of the shadow ray (typically in the normal direction), e.g. from $R\left(t_{i n t}\right)$ to $R\left(t_{i n t}\right)+\epsilon \widehat{N}$
- The light direction needs to be modified, to go from the light to $R\left(t_{\text {int }}\right)+\epsilon \widehat{N}$
- The new shadow ray is $S(t)=\left(R\left(t_{\text {int }}\right)+\epsilon \widehat{N}\right)-\hat{L}_{\text {mod }} t$ where $t \in\left[0, t_{\text {light }}\right)$
- Need to be careful that the new starting point isn't inside (or too close to) any other geometry

Aside: Code Acceleration

- When there are many objects in the scene, checking rays against all of their top level simple bounding volumes can become expensive
- Thus, world space bounding volume hierarchies, octrees, and K-D trees are used
- Also useful (but flat instead of hierarchical) are uniform spatial partitions (uniform grids) and viewing frustum partitions

Aside: Code Acceleration

- There are many variants: rectilinear grids with movable lines, hierarchies of uniform grids, and a structure proposed by [Losasso et al. 2006] that allows octrees to be allocated inside the cells of a uniform spatial partition

