Ray Tracing
Constructing Rays

- For each pixel, create a ray and intersect it with objects in the scene.
- The **first** intersection is used to determine a color for the pixel.
- The ray is \(R(t) = A + (P - A)t \) where \(A \) is the aperture and \(P \) is the pixel location.
- The ray is defined by \(t \in [0, \infty) \), although only \(t \in [1, t_{far}] \) will be inside the viewing frustum.
- We only care about the first intersection with \(t \geq 1 \).
Parallelization

- Ray tracing is a per pixel operation (scanline rendering is a per triangle operation)
- Ray tracing is inherently parallel (the ray for each pixel is independent of the rays for other pixels)

- Can utilize modern parallel CPUs/Clusters/GPUs to significantly accelerate ray tracing
 - Threading (e.g., Pthread, OpenMP) distributes rays across CPU cores
 - Message Passing Interface (MPI) distributes rays across CPUs on different machines (unshared memory)
 - OptiX/CUDA distributes rays on the GPU

- Memory coherency is important, when distributing rays to various threads/processors
 - Assign spatially neighboring rays (passing through neighboring pixels) to the same core/processor
 - These rays tend to intersect with the same objects in the scene, and thus tend to access the same memory

- For the sake of comparison: Scanline rendering is a per triangle operation, and is parallelized to handle one triangle at a time (usually on a GPU)
Ray-Triangle Intersection

- Given the enormous number of triangles, many approaches have been implemented and tested in various software/hardware settings:

 - Triangles are contained in planes, so it can be useful to look at Ray-Plane intersections first
 - A Ray-Plane intersection yields a point, and a subsequent test determines whether that point is inside (or outside) the triangle
 - Both the triangle and the point can be projected into 2D, and the 2D triangle rasterization test (to the left of all 3 rays, discussed last week) can be used to determine “inside”
 - Can project can into the xy, xz, yz plane by merely dropping the z, y, x coordinate (respectively) from the triangle vertices and the point
 - Most robust to drop the coordinate with the largest component in the triangle’s normal (so that the projected triangle has maximal area)
 - Alternatively, there is a fully 3D version of the 2D rasterization

- One can skip the Ray-Plane intersection and consider the Ray-Triangle intersection directly
 - This is similar to how ray tracing works for non-triangle geometry (ray tracers handle non-triangle geometry better than scanline rendering does)
Ray-Plane Intersection

- A plane is defined by a point p_o (on it) and a normal direction N.
- A point p is on the plane if $(p - p_o) \cdot N = 0$.
- A ray $R(t) = A + (P - A)t$ intersects the plane when $(R(t) - p_o) \cdot N = 0$ for some $t \geq 0$.
- That is, $(A + (P - A)t - p_o) \cdot N = 0$ or $(A - p_o) \cdot N + (P - A) \cdot Nt = 0$.
- So, $t = \frac{(p_o - A) \cdot N}{(P - A) \cdot N}$.
- Note: The length of N cancels (so it need not be unit length).
- As always, if $t \notin [1, t_{\text{far}}]$ or another intersection has a smaller t value, then this intersection is ignored.
- Note: a (non-unit length) triangle normal can be computed by taking the cross product of any two edges (as long as the triangle does not have zero area).
- Note: Any triangle vertex can be used as a point on the plane.
3D Point Inside a 3D Triangle

- Given \(t_{int} = \frac{(p_0 - A) \cdot N}{(p - A) \cdot N} \), evaluate \(R(t_{int}) = R_o \) to find the intersection point.

- Given edge \(e = p_1 - p_0 \), compute its normal \(n = (p_0 - p_2) - \left((p_0 - p_2) \cdot \frac{e}{\|e\|} \right) \frac{e}{\|e\|} \).

- \(R_o \) is interior to \(e \) when \((R_o - p_0) \cdot n < 0 \).

- If \(R_o \) is interior to all three edges, it is interior to the triangle.
Recall: Triangle Basis Vectors

- Compute edge vectors $u = p_0 - p_2$ and $v = p_1 - p_2$
- Any point p interior to the triangle can be written as $p = p_2 + \beta_1 u + \beta_2 v$ with $\beta_1, \beta_2 \in [0,1]$ and $\beta_1 + \beta_2 \leq 1$
- Substitutions and collecting terms gives $p = \beta_1 p_0 + \beta_2 p_1 + (1 - \beta_1 - \beta_2) p_2$ implying the equivalence: $\alpha_0 = \beta_1$, $\alpha_1 = \beta_2$, $\alpha_2 = 1 - \beta_1 - \beta_2$
Direct Ray-Triangle Intersection

- Triangle Basis Vectors: $p = p_2 + \beta_1 u + \beta_2 v$ with $\beta_1, \beta_2 \in [0,1]$ and $\beta_1 + \beta_2 \leq 1$
- Points on the ray have $R(t) = A + (P - A)t$
- An intersection point has $A + (P - A)t = p_2 + \beta_1 u + \beta_2 v$

- Or $(u \ v \ A - P) \begin{pmatrix} \beta_1 \\ \beta_2 \\ t \end{pmatrix} = A - p_2$ where $(u \ v \ A - P)$ is a 3x3 matrix and $A - p_2$ is a 3x1 vector (3 equations with 3 unknowns)
- This 3x3 system is degenerate when the columns of the 3x3 matrix are not full rank
- That happens when the triangle has zero area or the ray direction, $P - A$, is perpendicular to the plane’s normal
- Otherwise, there is a unique solution
- $R(t_{int})$ is inside the triangle, when that unique solution has: $\beta_1, \beta_2 \in [0,1]$ and $\beta_1 + \beta_2 \leq 1$

- As always, if $t \notin [1, t_{far}]$ or another intersection has a smaller t value, then this intersection is ignored
Solving with Cramer’s Rule

- Solving the 3x3 system with Cramer’s Rule allows for code optimization:
 - First compute the determinant of the 3x3 coefficient matrix \(\Delta = |(u \ v \ A - P)| \), which is nonzero when a solution exists.
 - Then compute \(t = \frac{\Delta_t}{\Delta} \) where the numerator is the determinant: \(\Delta_t = |(u \ v \ A - p_0)| \).
 - When \(t \notin [1, t_{far}] \) or there is an earlier intersection, can quit early (ignoring this intersection).

- Compute \(\beta_1 = \frac{\Delta_{\beta_1}}{\Delta} \) where \(\Delta_{\beta_1} = |(A - p_0 \ v \ A - P)| \).
 - When \(\beta_1 \notin [0,1] \), can quit early.

- Compute \(\beta_2 = \frac{\Delta_{\beta_2}}{\Delta} \) where \(\Delta_{\beta_2} = |(u \ A - p_0 \ A - P)| \).
 - When \(\beta_2 \in [0,1 - \beta_1] \), the intersection is marked as true.
Ray-Object Intersections

- As long as a ray-geometry intersection routine can be written, ray tracing can be applied to any representation of geometry.
- This is in contrast to scanline rendering where objects need to be turned into triangles.
- In addition to triangle meshes, ray tracers often use: analytic descriptions of geometry, implicitly defined surfaces, parametric surfaces, etc.

- The surfaces of many objects can be written as functions.
- E.g., \(f(p) = 0 \) if and only if \(p \) is on the surface (e.g. the equation for a plane).
- Sometimes there are additional constraints (such as on the barycentric weights for triangles).
- One quite useful class of such objects are implicit surfaces (covered later in the class).
- Ray-object intersection routines often proceed down a similar path:
 - substitute the ray equation in for the point, i.e. \(f(R(t)) = 0 \)
 - solve for \(t \)
 - check the solution against any additional constraints.
Ray-Sphere Intersections

• A point p is on a sphere with center C and radius r when $\|p - C\|_2 = r$
• Or (squaring both sides), when $(p - C) \cdot (p - C) = r^2$
• Substitute $R(t) = A + (P - A)t$ in for p to get a quadratic equation in t:
$$((P - A) \cdot (P - A)t^2 + 2(P - A) \cdot (A - C)t + (A - C) \cdot (A - C) - r^2 = 0$$
• When the discriminant of this quadratic equation is positive, there are two solutions (choose the one the ray hits first)
• When the discriminant is zero, there is one solution (the ray tangentially grazes the sphere)
• When the discriminant is negative, there are no solutions
Transformed Objects

- Geometry is often stored/represented in a convenient **object space**
- The **object space** can make the geometry **simpler** to deal with
 - E.g., spheres can be centered at the origin, objects are not sheared, coordinates may be non-dimensionalized for numerical robustness, there may be (auxiliary) geometric acceleration structures, more convenient color and texture information, etc.

- We often prefer to ray trace in this convenient **object space**, rather than world space
- **Transform the ray into object space** and find the ray-object intersection, then transform the relevant information back to world space

\[M \cdot R_{\text{object}}(t_{\text{int}}) \]
Aside: Code Acceleration

- Ray-Object intersections can be expensive
- So, put complex objects inside simpler objects, and first test for intersections against the simpler object (potentially skipping tests against the complex object)
- Simple bounding volumes: spheres, axis-aligned bounding boxes (AABB), or oriented bounding boxes (OBB)
Aside: Code Acceleration

- For complex objects, build a hierarchical tree structure in object space.
- The lowest levels of the tree contain the primitives used for intersections (and have simple geometry bounding them); then, these are combined hierarchically into a $\log n$ height tree.
- Starting at the top of a Bounding Volume Hierarchy (BVH), one can prune out many nonessential (missed) ray-object collision checks.
Aside: Code Acceleration

• Instead of a bottom-up bounding volume hierarchy approach, octrees and K-D trees take a top-down approach to hierarchically partitioning objects (and space)
Normals

- Objects tilted towards the light are bombarded with more photons than those tilted away from the light.

- The surface normal at the point \(R(t_{int}) \) can be used to approximate a plane (locally) tangent to the surface.

- Compare the (unit) incoming light direction \(\hat{L} \) with the (unit) normal \(\hat{N} \) to approximate the titling angle via: \(-\hat{L} \cdot \hat{N} = \cos \theta\)

- Incoming light with intensity \(I \) is scaled down to \(I \max(0, \cos \theta) \)
 - the max with 0 prunes surfaces facing away from the light

- If \((k_R, k_G, k_B)\) is the RGB color of a triangle \((k_R, k_G, k_B \in [0,1]\) are reflection coefficients), then the pixel color is \((k_R, k_G, k_B) I \max(0, \cos \theta) \)
Ambient vs. Diffuse Shading

- **Ambient shading** colors a pixel when its ray intersects the object
- **Diffuse shading** attenuates object color based on how far the unit normal is tilted away from the incoming light (note how your eyes/brain imagine a 3D shape)
Computing Unit Normals

- The unit normal to a plane is used in the plane’s definition, and is thus readily accessible
 - although it might need to be normalized to unit length

- The unit normal to a triangle can be computed by normalizing the cross product of two edges
 - Be careful with the edge ordering to ensure that the normal points outwards from the object (as opposed to inwards)

- For other objects: Need to provide a function that returns an (outward) unit normal for any point of intersection
 - E.g., a sphere with intersection point $R(t_{int})$, has an (outward) unit normal of:
 $$\hat{N} = \frac{R(t_{int})-C}{\|R(t_{int})-C\|_2}$$
Transformed Objects

- When ray tracing geometry in **object space**, the object space normal needs to be transformed back into world space along with the intersection point.

- Let u and v be edge vectors of a triangle in object space.
- Let Mu and Mv be their corresponding world space versions.
- The object space normal \mathbf{N} is transformed to world space via $M^{-T}\mathbf{N}$.

 Note: $Mu \cdot M^{-T}\mathbf{N} = u^T M^T M^{-T}\mathbf{N} = u^T \mathbf{N} = u \cdot \mathbf{N} = 0$, and $Mv \cdot M^{-T}\mathbf{N} = 0$.

 Note: $M^{-T}\mathbf{N}$ needs to be normalized to make it unit length.

- Careful, DO NOT USE $M\mathbf{N}$ as the world space normal:

 \mathbf{N}' is not the normal.

![Diagram showing transformation of normal](image)
Shadows

- The incoming light intensity I needs to be reduced, when photons are blocked by other objects or parts of the same object.
- Shadow rays determine whether photons from a light source are able to hit a point.
- A shadow ray is cast from the intersection point $R(t_{\text{int}})$ in the direction of the light $-\hat{L}$, $S(t) = R(t_{\text{int}}) - \hat{L}t$ with $t \in (0, t_{\text{light}})$.
- If no intersections are found in $(0, t_{\text{light}})$, then the light source is unobscured.
- Otherwise, the point is shadowed, and the light source is not used to color the pixel.

- Note: every light source is checked with a separate shadow ray.
- Note: low intensity ambient shading is often used for points completely shadowed (so that they are not completely black).
Spurious Self-Occlusion

- $t = 0$ is not included in $t \in (0, t_{light})$, to avoid incorrect self-intersections near $R(t_{int})$
- This can still happen because of issues with numerical precision
- Note: Some shadow rays should self-intersect (such as those on the back-side of an object)
Spurious Self-Occlusion

- A simple solution is to use $t \in (\epsilon, t_{light})$ for some $\epsilon > 0$ large enough to avoid numerical precision issues.
- This works well for many cases.
- However, grazing shadow rays may still incorrectly re-intersect the object.
Spurious Self-Occlusion

- Another option is to perturb the starting point of the shadow ray (typically in the normal direction), e.g. from $R(t_{int})$ to $R(t_{int}) + \epsilon \hat{N}$
- The light direction needs to be modified, to go from the light to $R(t_{int}) + \epsilon \hat{N}$
- The new shadow ray is $S(t) = (R(t_{int}) + \epsilon \hat{N}) - \hat{L}_{\text{mod}}t$ where $t \in [0, t_{\text{light}})$
- Need to be careful that the new starting point isn’t inside (or too close to) any other geometry
Aside: Code Acceleration

- When there are many objects in the scene, checking rays against all of their top level simple bounding volumes can become expensive.
- Thus, **world space** bounding volume hierarchies, octrees, and K-D trees are used.
- Also useful (but flat instead of hierarchical) are uniform spatial partitions (uniform grids) and viewing frustum partitions.

![Diagram](image)
Aside: Code Acceleration

- There are many variants: rectilinear grids with movable lines, hierarchies of uniform grids, and a structure proposed by [Losasso et al. 2006] that allows octrees to be allocated inside the cells of a uniform spatial partition.