
Ray Tracing



Constructing Rays
• For each pixel, create a ray and intersect it with objects in the scene
• The first intersection is used to determine a color for the pixel
• The ray is 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡 where 𝐴 is the aperture and 𝑃 is the pixel location
• The ray is defined by 𝑡 ∈ 0,∞ , although only 𝑡 ∈ [1, 𝑡!"#] will be inside the viewing frustum
• We only care about the first intersection with 𝑡 ≥ 1

aperture
pixel

film plane

ray

?

𝑡 = 0
𝑡 = 1



Parallelization
• Ray tracing is a per pixel operation (scanline rendering is a per triangle operation)
• Ray tracing is inherently parallel (the ray for each pixel is independent of the rays for other 
pixels) 

• Can utilize modern parallel CPUs/Clusters/GPUs to significantly accelerate ray tracing
• Threading (e.g., Pthread, OpenMP) distributes rays across CPU cores
• Message Passing Interface (MPI) distributes rays across CPUs on different machines (unshared memory)
• OptiX/CUDA distributes rays on the GPU

• Memory coherency is important, when distributing rays to various threads/processors
• Assign spatially neighboring rays (passing through neighboring pixels) to the same core/processor
• These rays tend to intersect with the same objects in the scene, and thus tend to access the same memory

• For the sake of comparison: Scanline rendering is a per triangle operation, and is parallelized to 
handle one triangle at a time (usually on a GPU)



Ray-Triangle Intersection
• Given the enormous number of triangles, many approaches have been implemented and 
tested in various software/hardware settings:

• Triangles are contained in planes, so it can be useful to look at Ray-Plane intersections first
• A Ray-Plane intersection yields a point, and a subsequent test determines whether that point 
is inside (or outside) the triangle
• Both the triangle and the point can be projected into 2D, and the 2D triangle rasterization test (to the left of all 

3 rays, discussed last week) can be used to determine “inside”
• Can project can into the xy, xz, yz plane by merely dropping the z, y, x coordinate (respectively) from the 

triangle vertices and the point
• Most robust to drop the coordinate with the largest component in the triangle’s normal (so that the 

projected triangle has maximal area)
• Alternatively, there is a fully 3D version of the 2D rasterization

• One can skip the Ray-Plane intersection and consider the Ray-Triangle intersection directly
• This is similar to how ray tracing works for non-triangle geometry (ray tracers handle non-triangle geometry 

better than scanline rendering does)



Ray-Plane Intersection
• A plane is defined by a point 𝑝( (on it) and a normal direction 𝑁
• A point 𝑝 is on the plane if 𝑝 − 𝑝( ⋅ 𝑁 = 0
• A ray	𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡 intersects the plane when 𝑅 𝑡 − 𝑝( ⋅ 𝑁 = 0 for some 𝑡 ≥ 0
• That is, 𝐴 + 𝑃 − 𝐴 𝑡 − 𝑝( ⋅ 𝑁 = 0  or 𝐴 − 𝑝( ⋅ 𝑁 + 𝑃 − 𝐴 ⋅ 𝑁𝑡	 = 0
• So, 𝑡 = )!*+ ⋅-

.*+ ⋅-  
• Note: The length of 𝑁 cancels (so it need not be unit length)

• As always, if 𝑡 ∉ 1, 𝑡!"#  or another intersection has a smaller 𝑡 value, then this intersection is 
ignored

• Note: a (non-unit length) triangle normal can be computed by taking the cross product of any 
two edges (as long as the triangle does not have zero area)
• Note: Any triangle vertex can be used as a point on the plane



3D Point Inside a 3D Triangle
• Given 𝑡/01 =

)!*+ ⋅-
.*+ ⋅- , evaluate 𝑅 𝑡/01 = 𝑅( to find the intersection point

• Given edge 𝑒 = 𝑝2 − 𝑝3, compute its normal 𝑛 = 𝑝3 − 𝑝4 − 𝑝3 − 𝑝4 ⋅ 5
5

5
5  

• 𝑅( is interior to 𝑒 when 𝑅( − 𝑝3 ⋅ 𝑛 < 0	
• If 𝑅( is interior to all three edges, it is interior to the triangle

𝒑𝟎

𝒑𝟏

𝒑𝟐

𝒆

𝒑𝟎 − 𝒑𝟐 ⋅ 𝒆
𝒆

𝒆
𝒆

𝒏



Recall: Triangle Basis Vectors
• Compute edge vectors 𝑢 = 𝑝3 − 𝑝4 and 𝑣 = 𝑝2 − 𝑝4
• Any point 𝑝 interior to the triangle can be written as 𝑝 = 𝑝4 + 𝛽2𝑢 + 𝛽4𝑣 with 𝛽2, 𝛽4 ∈ [0,1] 

and 𝛽2 + 𝛽4 ≤ 1
• Substitutions and collecting terms gives 𝑝 = 𝛽2𝑝3 + 𝛽4𝑝2 + (1 − 𝛽2 − 𝛽4)𝑝4 implying the 

equivalence: 𝛼3 = 𝛽2,  𝛼2 = 𝛽4 , 𝛼4 = 1 − 𝛽2 − 𝛽4

𝑝$

𝑝%

𝑝&

𝑣 = 𝑝& − 𝑝$

𝑢 = 𝑝% − 𝑝$

𝑝



Direct Ray-Triangle Intersection
• Triangle Basis Vectors: 𝑝 = 𝑝4 + 𝛽2𝑢 + 𝛽4𝑣 with 𝛽2, 𝛽4 ∈ [0,1] and 𝛽2 + 𝛽4 ≤ 1
• Points on the ray have 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡
• An intersection point has 𝐴 + 𝑃 − 𝐴 𝑡 = 𝑝4 + 𝛽2𝑢 + 𝛽4𝑣 

• Or 𝑢 𝑣 𝐴 − 𝑃
𝛽2
𝛽4
𝑡

= 𝐴 − 𝑝4 where 𝑢 𝑣 𝐴 − 𝑃  is a 3x3 matrix and 𝐴 − 𝑝4 is a 3x1 

vector (3 equations with 3 unknowns)
• This 3x3 system is degenerate when the columns of the 3x3 matrix are not full rank
• That happens when the triangle has zero area or the ray direction, 𝑃 − 𝐴, is perpendicular to 
the plane’s normal
• Otherwise, there is a unique solution
• 𝑅 𝑡/01  is inside the triangle, when that unique solution has: 𝛽2, 𝛽4 ∈ [0,1] and 𝛽2 + 𝛽4 ≤ 1

•  As always, if 𝑡 ∉ 1, 𝑡!"#  or another intersection has a smaller 𝑡 value, then this intersection 
is ignored



Solving with Cramer’s Rule
• Solving the 3x3 system with Cramer’s Rule allows for code optimization:

• First compute the determinant of the 3x3 coefficient matrix Δ = | 𝑢 𝑣 𝐴 − 𝑃 |, which is 
nonzero when a solution exists
• Then compute 𝑡 = :"

:   where the numerator is the determinant: Δ1 = | 𝑢 𝑣 𝐴 − 𝑝3 |
•  When 𝑡 ∉ 1, 𝑡!"#  or there is an earlier intersection, can quit early (ignoring this intersection)

• Compute  𝛽2 =
:#$
:

 where Δ;$ = | 𝐴 − 𝑝3 𝑣 𝐴 − 𝑃 |
• When 𝛽2 ∉ [0,1], can quit early

• Compute  𝛽4 =
:#%
:  where Δ;% = | 𝑢 𝐴 − 𝑝3 𝐴 − 𝑃 |

• When 𝛽4 ∈ [0,1 − 𝛽2], the intersection is marked as true



Ray-Object Intersections
• As long as a ray-geometry intersection routine can be written, ray tracing can be applied to 
any representation of geometry
• This is in contrast to scanline rendering where objects need to be turned into triangles
• In addition to triangle meshes, ray tracers often use: analytic descriptions of geometry, 
implicitly defined surfaces, parametric surfaces, etc.

• The surfaces of many objects can be written as functions
• E.g., 𝑓 𝑝 = 0 if and only if 𝑝 is on the surface (e.g. the equation for a plane)
• Sometimes there are additional constraints (such as on the barycentric weights for triangles)
• One quite useful class of such objects are implicit surfaces (covered later in the class)
• Ray-object intersection routines often proceed down a similar path: 
• substitute the ray equation in for the point, i.e. 𝑓 𝑅(𝑡) = 0
• solve for 𝑡 
• check the solution against any additional constraints



Ray-Sphere Intersections
• A point 𝑝 is on a sphere with center 𝐶 and radius 𝑟 when 𝑝 − 𝐶 4 = 𝑟 
• Or (squaring both sides), when 𝑝 − 𝐶 ⋅ (𝑝 − 𝐶) = 𝑟!

• Substitute 𝑅 𝑡 = 𝐴 + 𝑃 − 𝐴 𝑡 in for 𝑝 to get a quadratic equation in 𝑡:
𝑃 − 𝐴 ⋅ 𝑃 − 𝐴 𝑡4 + 2 𝑃 − 𝐴 ⋅ 𝐴 − 𝐶 𝑡 + 𝐴 − 𝐶 ⋅ 𝐴 − 𝐶 − 𝑟4 = 0

• When the discriminant of this quadratic equation is positive, there are two solutions (choose 
the one the ray hits first)
• When the discriminant is zero, there is one solution (the ray tangentially grazes the sphere)
• When the discriminant is negative, there are no solutions



Transformed Objects
• Geometry is often stored/represented in a convenient object space
• The object space can make the geometry simpler to deal with
• E.g., spheres can be centered at the origin, objects are not sheared, coordinates may be non-dimensionalized 

for numerical robustness, there may be (auxiliary) geometric acceleration structures, more convenient color 
and texture information, etc.

• We often prefer to ray trace in this convenient object space, rather than world space
• Transform the ray into object space and find the ray-object intersection, then transform the 
relevant information back to world space

𝑴 ⋅ 𝑹𝒐𝒃𝒋𝒆𝒄𝒕(𝒕𝒊𝒏𝒕)



Aside: Code Acceleration
• Ray-Object intersections can be expensive
• So, put complex objects inside simpler objects, and first test for intersections against the 
simpler object (potentially skipping tests against the complex object)
• Simple bounding volumes: spheres, axis-aligned bounding boxes (AABB), or oriented bounding 
boxes (OBB)



Aside: Code Acceleration
• For complex objects, build a hierarchical tree structure in object space
• The lowest levels of the tree contain the primitives used for intersections (and have simple 
geometry bounding them); then, these are combined hierarchically into a log 𝑛 height tree
• Starting at the top of a Bounding Volume Hierarchy (BVH), one can prune out many 
nonessential (missed) ray-object collision checks



Aside: Code Acceleration
• Instead of a bottom-up bounding volume hierarchy approach, octrees and K-D trees take a 
top-down approach to hierarchically partitioning objects (and space) 



Normals
• Objects tilted towards the light are bombarded with more photons than those tilted away 
from the light

• The surface normal at the point 𝑅 𝑡/01  can be used to approximate a plane (locally) tangent 
to the surface
• Compare the (unit) incoming light direction K𝐿 with the (unit) normal M𝑁 to approximate the 
titling angle via: −K𝐿 ⋅ M𝑁 = cos 𝜃
• Incoming light with intensity 𝐼 is scaled down to 𝐼	max(0, cos	𝜃)
• the max with 0 prunes surfaces facing away from the light
• If (𝑘<, 𝑘= , 𝑘>) is the RGB color of a triangle (𝑘<, 𝑘= , 𝑘> ∈ 0,1  are reflection coefficients), 
then the pixel color is 𝑘<, 𝑘= , 𝑘> 𝐼	max 0, cos	𝜃



Ambient vs. Diffuse Shading
• Ambient shading colors a pixel when its ray intersects the object
• Diffuse shading attenuates object color based on how far the unit normal is tilted away from 
the incoming light (note how your eyes/brain imagine a 3D shape)

Ambient Diffuse



Computing Unit Normals
• The unit normal to a plane is used in the plane’s definition, and is thus readily accessible
• although it might need to be normalized to unit length

• The unit normal to a triangle can be computed by normalizing the cross product of two edges
• Be careful with the edge ordering to ensure that the normal points outwards from the object 
(as opposed to inwards)

• For other objects: Need to provide a function that returns an (outward) unit normal for any 
point of intersection
• E.g., a sphere with intersection point 𝑅 𝑡/01 , has an (outward) unit normal of: 

&𝑁 = 2 3!"# 45
2 3!"# 45 $

 



Transformed Objects
• When ray tracing geometry in object space, the object space normal needs to be transformed 
back into world space along with the intersection point

• Let 𝑢 and 𝑣 be edge vectors of a triangle in object space
• Let 𝑀𝑢 and 𝑀𝑣 be their corresponding world space versions
• The object space normal M𝑁 is transformed to world space via 𝑀*? M𝑁
• Note: 𝑀𝑢 ⋅ 𝑀"# 8𝑁 = 𝑢#𝑀#𝑀"# 8𝑁 = 𝑢# 8𝑁 = 𝑢 ⋅ 8𝑁 = 0, and 𝑀𝑣 ⋅ 𝑀"# 8𝑁 = 0
• Note: 𝑀"# 8𝑁 needs to be normalized to make it unit length

• Careful, DO NOT USE 𝑀M𝑁 as the world space normal:

scale y N’ is not the normal



Shadows
• The incoming light intensity 𝐼 needs to be reduced, when photons are blocked by other 
objects or parts of the same object
• Shadow rays determine whether photons from a light source are able to hit a point
• A shadow ray is cast from the intersection point 𝑅 𝑡/01  in the direction of the light −K𝐿,

𝑆 𝑡 = 𝑅 𝑡/01 − K𝐿𝑡  with  𝑡 ∈ (0, 𝑡@/AB1)
• If no intersections are found in (0, 𝑡@/AB1), then the light source is unobscured
• Otherwise, the point is shadowed, and the light source is not used to color the pixel

• Note: every light source is checked with a separate shadow ray
• Note: low intensity ambient shading is often used for points completely shadowed (so that 
they are not completely black)



Spurious Self-Occlusion
• 𝑡 = 0 is not included in 𝑡 ∈ (0, 𝑡@/AB1), to avoid incorrect self-intersections near 𝑅 𝑡/01
• This can still happen because of issues with numerical precision 
• Note: Some shadow rays should self-intersect (such as those on the back-side of an object)

incorrect self-shadowing correct shadowing



Spurious Self-Occlusion
• A simple solution is to use 𝑡 ∈ (𝜖, 𝑡@/AB1) for some 𝜖 > 0 large enough to avoid numerical 
precision issues
• This works well for many cases
• However, grazing shadow rays may still incorrectly re-intersect the object



Spurious Self-Occlusion
• Another option is to perturb the starting point of the shadow ray (typically in the normal 
direction), e.g. from 𝑅 𝑡/01 	to 𝑅 𝑡/01 + 𝜖 M𝑁
• The light direction needs to be modified, to go from the light to 𝑅 𝑡/01 + 𝜖 M𝑁
• The new shadow ray is 𝑆 𝑡 = 𝑅 𝑡/01 + 𝜖 M𝑁 − K𝐿C(D𝑡 where 𝑡 ∈ [0, 𝑡@/AB1)
• Need to be careful that the new starting point isn’t inside (or too close to) any other geometry



Aside: Code Acceleration
• When there are many objects in the scene, checking rays against all of their top level simple 
bounding volumes can become expensive 
• Thus, world space bounding volume hierarchies, octrees, and K-D trees are used
• Also useful (but flat instead of hierarchical) are uniform spatial partitions (uniform grids) and 
viewing frustum partitions



Aside: Code Acceleration
• There are many variants: rectilinear grids with movable lines, hierarchies of uniform grids, and 
a structure proposed by [Losasso et al. 2006] that allows octrees to be allocated inside the cells 
of a uniform spatial partition


