Raytracing I
Looking Towards Ray Tracing

Rasterization (Scanline Rendering) Ray Tracing

- 2-Part Lecture: ray-object intersections & shadows today
- reflections, transmissions, & other recursive concepts next class
Recall: Lighting Equation

\[
L_0(\omega_o) = \sum_{i \in \text{in}} L_0(\omega_i, \omega_o) \\
L_0(\omega_o) = \int_{i \in \text{in}} BRDF(\omega_i, \omega_o) L_i \cos \theta_i d\omega_i
\]
Constructing Rays

- For each pixel, shoot a ray $R(t) = A + (P - A)t$ where:
 - A is the aperture (camera position), P is the pixel center
 - t is defined $t \in [0, \infty)$, technically $t \in [1, t_{\text{far}}]$ (inside frustum)
- Find the intersection with the smallest $t \in [1, t_{\text{far}}]$
- Then do lighting
Constructing Rays

- For each pixel, shoot a ray \(R(t) = A + (P - A)t \) where:
 - \(A \) is the aperture (camera position), \(P \) is the pixel center
 - \(t \) is defined \(t \in [0, \infty) \), technically \(t \in [1, t_{far}] \) (inside frustum)
- **Find the intersection** with the smallest \(t \in [1, t_{far}] \)
- Then do lighting
Ray-Triangle Intersection

- Recall: most of our objects will be triangle meshes
- So the question: how to we intersect our ray with a triangle?

- Observe: triangles are planar, i.e. they are contained in planes
- One technique (2-step problem):
 - 1) Consider ray-plane intersection first for an intersection point
 - 2) Then, check if intersection point is inside the triangle
- Various ways to do 2)

- Another approach: consider 3D ray-object intersection directly
Step 1: Ray-Plane Intersection

- From geometry, a plane is defined by:
 - p_o: a point on the plane (can use any triangle vertex)
 - N: a normal vector to the plane (can use triangle normal)
- A point p is on the plane if $(p - p_o) \cdot N = 0$

- Take our ray $R(t) = A + (P - A)t$ and solve for t:
 - $(R(t) - p_o) \cdot N = 0$
 - $(A - p_o) \cdot N + (P - A) \cdot N t = 0$
 - $t = \frac{(p_o - A) \cdot N}{(P - A) \cdot N}$
Step 1: Ray-Plane Intersection

- Our ray \(R(t) = A + (P - A)t \) intersects the plane \((p - p_o) \cdot N = 0\) when:

\[
t = \frac{(p_o - A) \cdot N}{(P - A) \cdot N}
\]

- Remember to restrict: \(t \in [1, t_{far}] \)

- Note that \(N \) is a vector; it does not cancel!
 - The lengths cancel though, so the normal doesn’t have to be a unit vector
 - Useful if you’re computing normals on the fly via e.g. cross products

- Once we have a \(t \in [1, t_{far}] \), we plug it into \(R(t) \) for our intersection
Step 2: Project Triangle & Intersection to 2D

- One technique (2-step problem):
 - 1) Consider ray-plane intersection first for an intersection point
 - 2) Then, check if intersection point is inside the triangle

- One approach to Step 2:
 - Once we have the ray-plane intersection, project both the intersection point and triangle into 2D
 - Example: project onto the xy-plane by dropping the z-coordinates of both the intersection point & triangle vertices
 - More robustly: drop the coordinate that has the largest component in the triangle’s normal vector
Step 2: Project Triangle & Intersection to 2D

- One approach to Step 2:
 - Once we have the ray-plane intersection, project both the intersection point and triangle into 2D
 - More robustly: drop the coordinate that has the largest component in the triangle’s normal vector
 - Then use techniques from 2D rasterization to determine if the point is inside the triangle:
Alt Step 2: 3D Point Inside 3D Triangle

- One technique (2-step problem):
 1) Consider ray-plane intersection first for an intersection point
 2) Then, check if intersection point is inside the triangle

- Alternative approach to Step 2:
 - Don’t do the 2D projection
 - Instead: check if the intersection point is in the triangle using 3D geometry
Alt Step 2: 3D Point Inside 3D Triangle

- Alternative approach to Step 2:
 - Don’t do the 2D projection
 - Instead: check the intersection using 3D geometry
- Let R_o be our intersection point
- Take a directed edge on our triangle:

 $$e = p_1 - p_o$$

 compute a normal to edge as:

 $$n = (p_o - p_2) - \left((p_o - p_2) \cdot \frac{e}{\|e\|} \right) \frac{e}{\|e\|}$$

 - R_o is interior to ray if $(R_o - p_o) \cdot n < 0$
Alt Step 2: 3D Point Inside 3D Triangle

- Recall for ray-plane intersection: \((R(t) - p_o) \cdot N = 0\)
- \(R_o\) is interior to ray if \((R_o - p_o) \cdot n < 0\)
- If interior to all 3 rays, then interior to the triangle

\[
n = (p_o - p_2) - \left((p_o - p_2) \cdot \frac{e}{||e||} \right) \frac{e}{||e||}
\]

Each edge of the triangle splits space into halves. Take the intersection of 3 half-planes!
Questions?
Ray-Triangle Intersection

- Recall: most of our objects will be triangle meshes
- So the question: how to we intersect our ray with a triangle?

- Observe: triangles are planar, i.e. they are contained in planes
- One technique (2-step problem):
 - 1) Consider ray-plane intersection first for an intersection point
 - 2) Then, check if intersection point is inside the triangle
- Various ways to do 2)

- Another approach: consider 3D ray-object intersection directly
Triangle Basis Vectors

- Any point inside the triangle can be written as a sum of one of the vertices plus scalings of the edge vectors:

\[p = p_o + \beta_1 u + \beta_2 v \quad \text{with: } \beta_1, \beta_2 \in [0, 1], \beta_1 + \beta_2 \leq 1 \]
Direct Ray-Triangle Intersection

- A point inside a triangle is given by: \(p = p_o + \beta_1 u + \beta_2 v \)
- Substitute our ray: \(R(t) = A + (P - A)t \)

\[
A + (P - A)t = p_o + \beta_1 u + \beta_2 v
\]

\[
(u, v, A - P) \begin{pmatrix}
\beta_1 \\
\beta_2 \\
t
\end{pmatrix} = A - p_o
\]

- Solve matrix equation for: \(\beta_1, \beta_2 \in [0, 1], \beta_1 + \beta_2 \leq 1 \)
- And: \(t \in [1, t_{far}] \)
Ray-Object Intersections

- Ray tracing generalizes well for non-triangular objects as long as we can have a good geometric representation for our objects.
- In contrast to scanline rendering, which needs triangles to rasterize.

- Can represent some geometry analytically, i.e., implicitly.
- Implicit surfaces can be represented as functions:
 \[f(p) = 0 \]
 for a point \(p \) on the surface.
- Simplest example: a sphere.
Ray-Sphere Intersections

- A point \(p \) on a sphere with center \(C \) and radius \(r \) satisfies:
 \[
 |p - C| = r \quad \Rightarrow \quad (p - C) \cdot (p - C) = r^2
 \]

- Substitute our ray: \(R(t) = A + (P - A)t \) for a quadratic equation:
 \[
 (P - A) \cdot (P - A)t^2 + 2(P - A) \cdot (A - C)t + (A - C) \cdot (A - C) - r^2 = 0
 \]
Ray-Superquadric Intersections

- Some more examples of implicit surfaces
- A superquadric centered at the origin is:
 \[|x|^r + |y|^s + |z|^t = 1\]
- When \(r, s, t\) all equal 2, we have a sphere!
 - less than 1: pointy octahedron with concave faces
 - exactly 1: a regular octahedron
 - between 1-2: blunt octahedron with convex faces
 - greater than 2: a rounded cube
 - infinity: cube
 - And more, e.g. vary exponents for ellipsoid
Ray-Superquadric Intersections

- Some more examples of implicit surfaces
- A superquadric centered at the origin is:

\[|x|^r + |y|^s + |z|^t = 1 \]
Parallelization

- Historically, ray tracing was too slow for real time rendering, hence optimization was spent on making scanline rendering real time.
- Nowadays, we have parallel CPUs / clusters / GPUs to speed it up.
- Threading (OpenMP), CUDA for GPU programming, etc.
- Ray tracing is a per pixel operation, so inherently parallel.
- Each ray is independent of any other ray.
- Assign neighboring rays (nearby pixels) to the same core / processor.
- Put object data in shared memory for each ray to access.
- Still relatively slow, but next gen consoles making progress.
Code Acceleration in Software

- Ray tracing: for each pixel, shoot a ray to see if it intersects a triangle.
- Basically requires a loop through every triangle for each pixel!

- Surround objects in bounding volumes, e.g. spheres
 - First, see if ray intersects the simpler bounding volumes
 - Then, worry about the triangles in your object
Bounding Volume Hierarchy (BVH)

- Usually split bounding volumes into smaller bounding volumes, building a bounding volume hierarchy in object space.
- $O(n)$ triangle intersection operations sped up to $O(\log(n))$.

![Diagram of BVH structure with objects and bounding volumes.](image)
Bounding Volume Hierarchy (BVH)

Octree: each volume split into 8 smaller volumes

K-D tree: each volume split into k smaller volumes
Uniform Partitions

- BVH can still be expensive when there are many objects in the scene
- Can also use uniform special partitions (e.g. uniform grids):
Questions?
Ray Tracing Transformed Objects

- Geometry including BVHs often created / stored in **object space**

- We can actually **ray trace in object space** instead of the global world space pretty easily by **transforming the ray into object space**:

\[M \cdot R_{\text{object}}(t_{\text{int}}) \]
Constructing Rays

- For each pixel, shoot a ray $R(t) = A + (P - A)t$ where:
 - A is the aperture (camera position), P is the pixel center
 - t is defined $t \in [0, \infty)$, technically $t \in [1, t_{far}]$ (inside frustum)
- Find the intersection with the smallest $t \in [1, t_{far}]$
- **Then do lighting**
Recall: The Importance of the Normal

\[
L_o(\omega_o) = \sum_{i\in in} L_o(\omega_i, \omega_o) \\
L_o(\omega_o) = \int_{i\in in} BRDF(\omega_i, \omega_o) L_i \cos \theta_i \, d\omega_i
\]

All incoming directions ω_i to pixel

Outgoing direction ω_o to image plane

Outgoing direction L_o
Normals in Object Space

- We typically define normals in object space.
- But lighting computations are done in world space.
Transforming Normals

- NOT as simple as $M\hat{N}$!
Transforming Normals

- NOT as simple as $M \hat{N}$!
- Let u be a triangle edge vector:
 \[
 Mu \cdot M^{-T} \hat{N} = (Mu)^TM^{-T} \hat{N} = u^TM^TM^{-T} \hat{N} = u^T \hat{N} = u \cdot \hat{N} = 0
 \]
- So actual transform is: $M^{-T} \hat{N}$
Questions?
Shadow Rays

\[L_o(\omega_o) = \int_{i \in \text{in}} BRDF(\omega_i, \omega_o) L_i \cos \theta_i d\omega_i \]

- Incoming light rays may get obscured by objects blocking the intersection point.
- For each light, cast a shadow ray in the direction of the light.
Shadow Rays

\[L_o(\omega_o) = \int_{i\in in} BRDF(\omega_i, \omega_o) L_i \cos \theta_i d\omega_i \]

- For each light, cast a shadow ray in the direction of the light

\[S(t) = R(t_{int}) - \hat{L}t \]
Shadow Rays

\[L_o(\omega_o) = \int_{i \in \text{in}} BRDF(\omega_i, \omega_o) L_i \cos \theta_i d\omega_i \]

- For each light, cast a shadow ray in the direction of the light:
 \[S(t) = R(t_{int}) - \hat{L}t \]
 \[t \in (0, t_{light}) \]
 - Exact same ray tracing process as we’ve been discussing
 - If no ray-object intersection for \(0 < t < t_{light} \), then do usual lighting
 - Else, an object is blocking the light to the intersection point, so there’s 0 radiance coming from that blocked light
Caution: Spurious Self-Occlusion

- For each light, cast a shadow ray in the direction of the light
 \[S(t) = R(t_{int}) - \hat{L}t \]
- Due to numerical imprecision, the shadow ray might start underneath the surface!
Caution: Spurious Self-Occlusion

- For each light, cast a shadow ray in the direction of the light
 \[S(t) = R(t_{int}) - \hat{L}t \]
- Due to numerical imprecision, the shadow ray might start underneath the surface!
Caution: Spurious Self-Occlusion

- For each light, cast a shadow ray in the direction of the light

\[S(t) = R(t_{int}) - \hat{L}t \]

- The shadow ray might start underneath the surface!
- Simple solution: consider \(t \in (\varepsilon, t_{light}) \) for small epsilon \(\varepsilon > 0 \)
 - Example: if most points are \(10^1 \) in magnitude, then try \(\varepsilon = 10^{-3} \)
 - May still fail for grazing shadow rays that re-intersect object!
Caution: Spurious Self-Occlusion

- Better solution: perturb by small epsilon in the normal direction
 \[S(t) = (R(t_{int}) + \epsilon \hat{N}) - \hat{L}_{mod} t \]
- Light direction needs to be modified slightly to start at \((R(t_{int}) + \epsilon \hat{N})\)
Questions?