## Recursive Ray Tracing



## Reflection and Transmission

- A shadow ray is cast to each light source, and the total contribution from all light sources is accumulated:

$$
\left(k_{R}, k_{G}, k_{B}\right)\left(\sum_{\text {lights }} V_{\text {light }} I_{\text {light }} \max \left(0, \cos \theta_{\text {light }}\right)+I_{\text {ambient }} \prod_{\text {lights }}\left(1-V_{\text {light }}\right)\right)
$$

- $V_{\text {light }}=1$ for visible light sources, and $V_{\text {light }}=0$ for occluded light sources
- $I_{\text {ambient }}$ is added to fully shadowed regions where $\prod_{\text {lights }}\left(1-V_{\text {light }}\right) \neq 0$
- To summarize: $\left(k_{R}, k_{G}, k_{B}\right)\left(L_{\text {diffuse }}+L_{\text {ambient }}\right)$
- Mirror-like reflection can also contribute to the color at an intersection point
- Transparency allows other objects to be seen through a surface, allowing those objects to contribute to the color as well
- In summary: $\left(k_{R}, k_{G}, k_{B}\right)\left(L_{\text {diffuse }}+L_{\text {ambient }}\right)+L_{\text {reflect }}+L_{\text {transmit }}$


## Scaling Coefficients

- Scaling coefficients are added in front of every lighting contribution

$$
\left(k_{R}, k_{G}, k_{B}\right)\left(k_{d} L_{\text {diffuse }}+k_{a} L_{\text {ambient }}\right)+k_{r} L_{\text {reflect }}+k_{t} L_{\text {transmit }}
$$

- Coefficients are typically adjusted relative to each other to get the desired "look"
- Then, all the coefficients are scaled together for overall brightness/darkness
- Note: each term adds light to the image, making it brighter (so it might over-saturate)

less reflection (darker)

more reflection (brighter)


## Recursion

- $L_{\text {reflect }}$ and $L_{\text {transmit }}$ are treated the same way pixel color is treated
- A ray is constructed for the reflection direction and intersected with scene geometry (just like what is done for camera rays through pixels)
- the result is stored in $L_{\text {reflect }}$
- A ray is constructed for the transmission direction and intersected with scene geometry (just like what is done for camera rays through pixels)
- the result is stored in $L_{\text {transmit }}$
- $L_{\text {reflect }}$ and $L_{\text {transmit }}$ depend on the color computed from the geometry that their rays intersected
- Those intersection points have colors of their own, also computed via: shadow rays, ambient and diffuse shading, and additional reflection and transmission
- Thus, even more rays need to be spawned

Ray Tree Example


## Code Simplicity

- Recursion allows for stunning imagery with minimal code, as demonstrated by these 1337 characters printed on the back of a business card
\#include <stdlib.h>
/ card > aek.ppm
\#include <stdio.h>
\#include <math.h>
typedef int i;typedef float f;struct $v\{$
$\mathrm{f} x, \mathrm{y}, \mathrm{z}$; v operator+(v r) \{return $\mathrm{v}(\mathrm{x}+\mathrm{r} . \mathrm{x}$
x*r.x+y*r.y+z*r.z;\}v()\{\}v operator^(v r
) $\mathrm{y}-\mathrm{y} * \mathrm{r} \cdot \mathrm{x}$ );\}v(f a,f b,f c) $\{x=a ; y=b ; z=c ;\} v$
Y-y*r.x); \}v(f a, f b, f c) $\{x=a ; y=b ; z=c ;\}$
this));\}\}; $\mathrm{G}[1=\{247570,280596,280600$
249748,
return(f)rand()/RAND MAX; \}i T(v o,v d,f
return(f)rand()/RAND_MAX;\}i T(V o,v d,f
<p) $t=\mathrm{p}, \mathrm{n}=\mathrm{v}(0,0,1), \mathrm{m}=1$; for (i $\mathrm{k}=19 ; \mathrm{k}-\mathrm{o}$; $)$
<p) $t=p, n=v(0,0,1), m=1 ;$ for $(i \quad k=19 ; k--;)$
$0,-j-4)$; $f=p=p d, c=p \% p-1, q=b * b-c$;if $(q>0$
p+d*t),m=2;\}\}return $m$; \}v $S(v) v$,
; v n ;i $\mathrm{m}=\mathrm{T}(0, \mathrm{~d}, \mathrm{t}, \mathrm{n})$;if(!m)return $\mathrm{v}(\mathrm{f}$
( 1 ) $m=w(1-d, 4): v h=0+d * t, l=1(v(9+R($
), $9+\mathrm{R}(), 16)+\mathrm{h} *-1), r=d+n *\left(n \% d^{2}-2\right) ; f \quad b=18$
),9+R(), 16)+h*-1),r=d+n*(n*d*-2); $f \quad b=1 \%$
n;if(b<0|T(h,1,t,n))b=0;f p=pow(l\%r*(b)
$\mathrm{h} . \mathrm{x})+\operatorname{ceil}(\mathrm{h} . \mathrm{y})) \& 1 ? \mathrm{v}(3,1,1): \mathrm{v}(3,3,3)) *(\mathrm{~b}$
h. x$)+\mathrm{ceil}(\mathrm{h} . \mathrm{y})) \& 1$ ? $\mathrm{v}(3,1,1): \mathrm{v}(3,3,3))^{*}(\mathrm{~b}$
*.2+.1); \}return v(p,p,p)+S(h,r)*.5; \}1
nain() \{printf("P6 512512255 C$) ; \mathrm{v} \mathrm{g}=$ !v
$(-6,-16,0), a=!\left(v(0,0,1)^{\wedge} g\right) * .002, b=!\left(g^{\wedge} a\right.$
for(i $x=512 ; x--$;) $\{v p(13,13,13)$; for(i r
$\begin{aligned} & =64 ; r--;)\{v t=a *(R()-5) * 99+b *(R()-.5) * \\ & 99 ; p=S(v(17,16,8)+t,!(t *-1+(a *(R()+x)+b\end{aligned}$
,(i)p.x,(i)p.y,(i)p.z);\}\}


## Termination

- If every intersected point continued to depend on reflected/transmitted rays, rays would be spawned indefinitely
- Eventually, one hits the recursion limit (depending on hardware) that prevents stack overflow
- If $k_{d}$ and $k_{a}$ are frequently nonzero, the reflected/transmitted contributions are eventually diminished enough that one can terminate the recursion (with imperceptible error)
- Terminate by using an arbitrary value for $L_{\text {reflect }}$ and/or $L_{\text {transmit }}$ (without tracing the associated ray)
- When there is not enough ambient/diffuse lighting (e.g. mirrors, bubbles, etc.), nearly $100 \%$ of the lighting is sought recursively via reflected/transmitted rays
- Then, the arbitrary values can show up in the pixel color (which is undesirable)
- So, choose realistic termination colors when possible (common choices: sky color, background color, etc.)


## Reflected Ray

- Given an incoming ray $R(t)=A+D t$, and (outward) unit normal $\widehat{N}$, the angle of incidence is defined via $D \cdot \widehat{N}=-\|D\|_{2} \cos \theta_{i}$
- Mirror reflection: incoming/outgoing rays make the same angle with $\widehat{N}$, i.e. $\theta_{o}=\theta_{i}$
- Note: all the rays and the normal are all coplanar
- Reflected ray direction: $D_{\text {reflect }}=D-2(D \cdot \widehat{N}) \widehat{N}$
- Reflected ray: $R_{\text {reflect }}(t)=R\left(t_{\text {int }}\right)+D_{\text {reflect }} t$



## Recall: Spurious Self-Occlusion

- A simple solution is to use $t \in\left(\epsilon, t_{\text {light }}\right)$ for some $\epsilon>0$ large enough to avoid numerical precision issues
- This works well for many cases
- However, grazing shadow rays may still incorrectly re-intersect the object



## Spurious Self-Occlusion

- Perturb the starting point of the reflected ray to $R\left(t_{i n t}\right)+\epsilon \widehat{N}$
- The ray direction does not need to be modified (dissimilar to shadow rays)
- The new reflected ray is $R_{\text {reflect }}(t)=R\left(t_{\text {int }}\right)+\epsilon \widehat{N}+D_{\text {reflect }} t$ with $t \in[0, \infty)$
- Need to be careful that the new starting point isn't inside (or too close to) any other geometry


Reflections


## Transmission

- The angle of incidence and angle of transmission (or refraction) are related via Snell's Law:

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}
$$

- Incoming/outgoing angles: $\theta_{1}, \theta_{2}$; phase velocities: $v_{1}, v_{2}$; indices of refraction: $n_{1}, n_{2}$



## Transmitted Ray

- $\widehat{D}$ is the (unit) incoming ray direction, $\widehat{N}$ is the (outward) unit normal, and $\widehat{T}$ is the unit tangent in the plane of $\widehat{D}$ and $\widehat{N}$, so that $\widehat{D}+\widehat{N} \cos \theta_{1}+\widehat{T} \sin \theta_{1}=0$
- $\widehat{D}_{\text {transmit }}$ is the (unit) transmitted ray direction, so $\widehat{D}_{\text {transmit }}+\widehat{T} \sin \theta_{2}+\widehat{N} \cos \theta_{2}=0$



## Transmitted Ray

- $\widehat{D}_{\text {transmit }}=-\widehat{T} \sin \theta_{2}-\widehat{N} \cos \theta_{2}=\left(\widehat{D}+\widehat{N} \cos \theta_{1}\right) \frac{\sin \theta_{2}}{\sin \theta_{1}}-\widehat{N} \sqrt{1-\sin ^{2} \theta_{2}}$
- Using Snell's Law: $\widehat{D}_{\text {transmit }}=\left(\widehat{D}+\widehat{N} \cos \theta_{1}\right) \frac{n_{1}}{n_{2}}-\widehat{N} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{1}\right)^{2}}$
- $\widehat{D}_{\text {transmit }}=\widehat{D} \frac{n_{1}}{n_{2}}+\widehat{N}\left(\frac{n_{1}}{n_{2}} \cos \theta_{1}-\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-\cos ^{2} \theta_{1}\right)}\right)$
- $\cos \theta_{1}=-\widehat{D} \cdot \widehat{N}$ leads to $\widehat{D}_{\text {transmit }}=\widehat{D} \frac{n_{1}}{n_{2}}-\widehat{N}\left(\frac{n_{1}}{n_{2}} \widehat{D} \cdot \widehat{N}+\sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left(1-(\widehat{D} \cdot \widehat{N})^{2}\right)}\right)$
- When the term under the square root is negative, there is no transmitted ray (all the light is reflected, i.e. total internal reflection)
- Note: This equation works regardless of whether $n_{1}$ or $n_{2}$ is bigger
- Note: Add $\epsilon>0$ to avoid self intersection, or offset in the negative normal direction (while avoiding other nearby geometry, etc.)


## Total Internal Reflection

- When light goes from a higher index of refraction to lower index of refraction, no light is transmitted when the incident angle exceeds a critical angle
- In such a case, all the light reflects

when $\theta_{2}<\theta_{2 \text {,max }}$, both reflection and transmission occur

when $\theta_{2}>\theta_{2 \text {,max }}$, only reflection occurs


## Critical Angle

- $\theta_{1}=\frac{\pi}{2}$ is the maximum angle for transmission
- $\sin \left(\frac{\pi}{2}\right)=1$ and Snell's Law becomes $\frac{1}{\sin \theta_{2}}=\frac{n_{2}}{n_{1}}$ or $\theta_{2}=\arcsin \left(\frac{n_{1}}{n_{2}}\right)$
- Note: this can only occur when $n_{1}<n_{2}$



## Total Internal Reflection

- Responsible for many interesting and impressive visuals in both glass and water



## Snell's Window

- Yes, fish can see you standing on the shore!



## Snell's Window



## Reflection vs. Transmission

- The amount of transmission vs. reflection decreases as the viewing angle goes from perpendicular (overhead) to parallel (grazing)


Perpendicular (overhead) view: more transmission, less reflection


Parallel (grazing) view: more reflection, less transmission

## Reflection vs. Transmission

- Even for opaque objects (that lack transmission), reflection behaves similarly


As the viewing angle changes from overhead to a grazing angle (from left to right), the amount of reflection off of the table increases (one can better see the book's reflection)

## Fresnel Equations

- The proportion of reflection gradually increases as the viewing angle goes from perpendicular (coincident with the normal) to parallel (orthogonal to the normal)


Light entering a denser material (e.g. from air into water)


Light leaving a denser material (e.g. exiting water into air)

## Fresnel Equations

- Light is polarized into 2 parts, based on whether the plane containing the incident, reflected, refracted rays is parallel (p-polarized) or perpendicular (s-polarized) to the electric field
- The Fresnel equations approximate the fraction of light reflected as:

$$
R_{p}=\left|\frac{n_{1} \cos \theta_{t}-n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{t}+n_{2} \cos \theta_{i}}\right|^{2} \quad R_{s}=\left|\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}\right|^{2}
$$

- Transmission (if it occurs) is calculated as the remaining light:

$$
T_{p}=1-R_{p} \quad T_{S}=1-R_{S}
$$

- For unpolarized light (a typical assumption in ray tracing), assume:

$$
R=\frac{R_{p}+R_{S}}{2} \quad T=1-R
$$

## Schlick's Approximation

- Approximate reflection via:

$$
R\left(\theta_{i}\right)=R_{0}+\left(1-R_{0}\right)\left(1-\cos \theta_{i}\right)^{5}
$$

$$
R_{0}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2}
$$



## Conductors vs. Dielectrics

- Conductors (of electricity, e.g. metals) mostly reflect light (low absorption, no transmission)
- The amount reflected doesn't change much with viewing angle
- see copper, aluminum, iron on the last slide
- Thus, $k_{r}$ can be approximated as a constant (independent of viewing direction) for conductors
- In contrast, $k_{r}$ varies significantly with viewing angle for dielectrics (e.g. glass, water)


Conductor


Dielectric

## Curved Surfaces

- The viewing angle can vary (from perpendicular to parallel) across the surface of an object
- The amount of reflection vs. transmission similarly varies
- Capturing this is especially important for dielectrics


Correct reflection vs. transmission (based on viewing angle)


Incorrect reflection vs. transmission (no dependence on viewing angle)

## Attenuation

- Light is absorbed and scattered as it travels through material
- This attenuates the amount of light traveling along a straight line
- The amount of attenuation depends on the distance traveled (through the material)
- Different colors (actually, different wavelengths) are attenuated at different rates

Example:

- Shallow water is clear (almost no attenuation)
- Deeper water attenuates all the red light and looks bluish-green
- Even deeper water attenuates all the green light too, and looks dark blue
- Eventually all the light attenuates, and the color ranges from blackish-blue to black


## Beer's Law

- For homogeneous media, attenuation can be approximated by Beer's Law
- Light with intensity $I$ is attenuated over a distance $x$ via the Ordinary Differential Equation (ODE): $\frac{d I}{d x}=-c I$ where $c$ is the attenuation coefficient
- This ODE has an exact solution: $I(x)=I_{o} e^{-c x}$ where $I_{o}$ is the original amount of light



## Beer's Law

- The color of a transparent object is described by three attenuation coefficients: $c_{R}, c_{G}, c_{B}$
- Shadow rays are also attenuated



## Atmospheric Refraction

- Light continuously bends (following a curved path) as it passes through varying temperature gases (with varying density)
- The density variations cause similar variations in the index of refraction


Inferior Mirage


## Superior Mirage (March 2021, England)



## Atmospheric Refraction

- Bend ray traced rays as they go through varying air densities
- Change the direction between every interval in the vertical direction (left) or along the ray direction (right)



## Gravity can bend light too!



## Iridescence

- A surface can gradually change color as the viewing angle or the lighting change



## Iridescence

- Various light waves are emitted in the same direction giving constructive/destructive interference


