## Optics



## Solid Angle

- A 2D angle in 3D, defined by a point and a surface patch (measured in steradians)
- Angles have $\theta=\frac{l_{\text {arc }}}{r}$, and solid angles have $\omega=\frac{A_{\text {on the sphere surface }}}{r^{2}}$
- Circumference of a circle is $C=2 \pi r$, so a circle has $2 \pi$ radians
- Surface area of a sphere is $4 \pi r^{2}$, so a sphere has $4 \pi$ steradians



## Radiant Intensity from a Light Source

- Power per unit solid angle $I(\omega)=\frac{d \Phi}{d \omega}$
- $\Phi$ is the light source power (in watts = joules per second)
- Anisotropic light source: I varies across the light (as a function of $\omega$ )
- Isotropic point light: integrate $d \Phi=I d \omega$ to obtain $\Phi=\int_{\text {sphere }} I d \omega=4 \pi I$

anisotropic light source

isotropic point light


## Irradiance onto a Surface

- Power per unit surface area $E=\frac{d \Phi}{d A}$
- Given $E_{\text {flat }}=\frac{\Phi_{\text {flat }}}{A}$, note that $E_{\text {tilted }}=\frac{\left(\frac{A \cos \theta}{A}\right) \Phi_{\text {flat }}}{A}=E_{\text {flat }} \cos \theta$
- Irradiance decreases as you tilt the surface, since less photons hit per unit surface area



## Solid Angle vs. Cross-Sectional Area

- The (orthogonal) cross-sectional area is $d A \cos \theta$ (from the previous slide)
- So, $d \omega=\frac{d A_{\text {sphere }}}{r^{2}}=\frac{d A \cos \theta}{r^{2}}$ (solid angle varies with tilting $\theta$ and distance $r$ )



## Area Lights

- Light power is emitted per unit area (not from a single point)
- The emitted light goes in various directions (measured with solid angles)
- Break an area light up into (infinitesimally) small area chunks
- Each area chunk emits light into each of the solid angle directions
- i.e. radiant intensity per area chunk
- Each emitted direction also has a cosine term (similar to irradiance)
- Radiance - radiant intensity per area chunk

$$
L=\frac{d I}{d A \cos \theta_{\text {light }}}\left(=\frac{d^{2} \Phi}{d \omega d A \cos \theta_{\text {light }}}=\frac{d E}{d \omega \cos \theta_{\text {light }}}\right)
$$

## Objects act as Area Lights

- Light comes from all visible objects in the world (not just from light sources)
- Each area chunk of each object acts as a source of light (i.e. as a light source)
- A tree shines light onto the car; then, the car shines light onto the camera:



## Objects act as Area Lights

- The red paper shines red light onto the statue (color bleeding); then, the statue shines red light onto the camera:



## Objects act as Area Lights

- It's not good enough to only look for light along shadow rays (even though, it's pretty good)

using light only from shadow rays

using light from shadow rays and objects


## Measuring Incoming Light

- Light Probe: a small reflective chrome sphere
- Photograph it, in order to record the incoming light (at its location) from all directions



## Using the (measured) Incoming Light

- The (measured) incoming light can be used to render a synthetic object (with realistic lighting)



## Light/Object Interactions

- When light hits a material, it may be: absorbed, reflected, transmitted
- When light passes through a material, it may be: absorbed, scattered
- When exits a material, it may be: absorbed, reflected, transmitted



## Engineering Approximations

- BRDF
- Bidirectional Reflectance Distribution Function
- models how light is reflected
- BTDF
- Bidirectional Transmittance Distribution Function
- models how light is transmitted
- BSSRDF
- Bidirectional Surface Scattering Reflectance Distribution Function
- combined reflection/transmission model


Opaque (BRDF) vs. Translucent (BSSRDF)


## BRDF

- $\operatorname{BRDF}\left(\lambda, \omega_{i}, \omega_{o}, u, v\right)$
- $\lambda$ is the wavelength (we'll cheat with $R, G, B$ as usual)
- ( $u, v$ ) are the coordinates on the object's surface (we'll cheat with a texture)
- $\omega_{i}\left(\theta_{i}, \phi_{i}\right)$ and $\omega_{o}\left(\theta_{o}, \phi_{o}\right)$ are the incoming/outgoing light directions (parameterized by the 2D surface of a hemisphere)
- Thus, we consider: $B R D F_{R}\left(\omega_{i}, \omega_{o}\right), B R D F_{G}\left(\omega_{i}, \omega_{o}\right), B R D F_{B}\left(\omega_{i}, \omega_{o}\right)$
- These are each 4D functions, i.e. functions of 4 variables $\theta_{i}, \phi_{i}, \theta_{o}, \phi_{o}$
- Specifically: $B R D F\left(\omega_{i}, \omega_{o}\right)=\frac{d L_{o}\left(\omega_{o}\right)}{d E_{i}\left(\omega_{i}\right)}$
- The outgoing light emitted from a surface patch (acting as an area light), as a fraction of the incoming light hitting that surface patch (irradiance)


## Measuring/Approximating a BRDF

- Can measure 4D BRDF data with a gonioreflectometer (to obtain a 4D table of values)
- Alternatively, there are analytical models:
- Blinn-Phong Model - simplest and general purpose (plastic)
- Cook-Torrance Model - better specular (metal)
- Ward Model - anisotropic (brushed metal, hair)
- Oren-Nayar Model - non-Lambertian (concrete, plaster, the moon)
- Etc.



## The Lighting Equation

- Given a point on an object:
- Light from every incoming direction $\omega_{i}$ hits that point
- For each incoming direction $\omega_{i}$, light is reflected outwards in every direction $\omega_{o}$
- The BRDF indicates what fraction of the light from an incoming direction $\omega_{i}$ is reflected in each of the outgoing directions $\omega_{o}$
- Light is reflected in all outgoing directions (allowing us all to see the same spot on an object)
- But, we all see different light (so it can, and often does, look differently to each one of us)
- To render a synthetic scene, one (merely) needs to figure out what light each pixel of the camera's film sees


## It's an Integral

- The total amount of light reflected in a single outgoing direction is the sum of the of the light reflected in that direction due to light incoming from every direction: $L_{o}\left(\omega_{o}\right)=\sum_{i \in i n} L_{o \text { due to } i}\left(\omega_{i}, \omega_{o}\right)$

Incoming light


## The Lighting Equation

- For each pixel, integrate the BRDF across all incoming directions for every point in the pixel's un-projected area (which acts as an area light)

$$
L_{o}\left(\omega_{o}\right)=\int_{i \in i n} B R D F\left(\omega_{i}, \omega_{o}\right) d E_{i}\left(\omega_{i}\right)
$$

All incoming directions $\omega_{i}$

## (Radiance only) Lighting Equation

- Multiplying the BRDF by an incoming irradiance gives the outgoing radiance

$$
d L_{o \text { due to } i}\left(\omega_{i}, \omega_{o}\right)=\operatorname{BRDF}\left(\omega_{i}, \omega_{o}\right) d E_{i}\left(\omega_{i}\right)
$$

- For even more realistic lighting, we'll bounce light all around the scene
- It's tedious to convert between $E$ and $L$, so use $d E=L d \omega \cos \theta$ to obtain:

$$
d L_{o \text { due to } i}\left(\omega_{i}, \omega_{o}\right)=B R D F\left(\omega_{i}, \omega_{o}\right) L_{i} d \omega_{i} \cos \theta_{i}
$$

- Then,

$$
L_{o}\left(\omega_{o}\right)=\int_{i \in i n} B R D F\left(\omega_{i}, \omega_{o}\right) L_{i} \cos \theta_{i} d \omega_{i}
$$

## Pixel Color

- Power per unit area hitting a pixel (irradiance):

$$
E_{i}=\int L_{i} \cos \theta_{i} d \omega_{i}
$$

obtained from integrating
$d E=L d \omega \cos \theta$

- Assume $L$ and $\theta$ are constant across the (very) small pixels:

$$
E_{p i x e l} \approx L_{p i x e l, a v e} \cos \theta_{\text {pixel,ave }} \int d \omega_{i}=\left(L_{\text {pixel,ave }} \cos \theta_{\text {pixel,ave }}\right) \omega_{\text {pixel }}
$$

- If the film is small, $\cos \theta_{\text {pixel,ave }} \approx 1$ and $\omega_{\text {pixel }} \approx \frac{\omega_{\text {film }}}{\# \text { pixels }}$; then,

$$
E_{\text {pixel }} \approx\left(\frac{\omega_{\text {film }}}{\# \text { pixels }}\right) L_{\text {pixel,ave }}
$$

- Thus, can store $L$ instead of $E$ (and scale by constant later)

