
Global Illumination





Photon Tracing
• For each light, choose a number of outgoing directions (on the hemisphere or 

sphere); emit a photon in each direction
• Each photon travels in a straight line, until it intersects an object
• If Absorbed: terminate photon (it doesn’t get to the film)
• If Reflected/Transmitted/Scattered: photon goes off in a new direction (until it 

again intersects an object)

• If a photon goes through the camera aperture and hits the film, it contributes to 
the final image



Photon Tracing
•  Most of the light never hits the film (far too inefficient, impractical)



(Backward) Path Tracing
• For each pixel, send a ray through the aperture to backward trace a photon that 

would hit the pixel (same as ray tracing)
• If the ray hits an object, cast rays in all directions of the hemisphere in order to 

backwards trace incoming photons
• Every new ray that hits another surface spawns an entire hemisphere of rays of its own 

(exponential growth, impractical)

• Follow all rays until they hit a light source (and terminate)

• A terminated ray (only) gives a path from the light source to the pixel
• Emit photons along this path, bounce them off all the objects along the path, check to see 

if absorbed (otherwise, continue on towards the pixel)
• Some percentage of the photons are absorbed resulting in a specific color/brightness of 

light hitting the pixel (along that path)



(Backward) Path Tracing
•  Most paths take too long to find their way back to the light source (inefficient)



Ray Tracing (a more efficient Path Tracing)
• Ignore most incoming directions on the hemisphere, only keeping the most 

important ones:

• Rays incoming directly from the light source have a lot of photons
• A Shadow Ray is used to account for this incoming light
• Called direct illumination (since light is coming directly from a light source)

• Reflective objects bounce a lot of photons in the mirror reflection direction
• This incoming light is accounted for with a Reflected Ray

• Transparent objects transmit a lot of photons along the transmitted ray direction
• This incoming light is accounted for with a Transmitted Ray

• Downside: ignoring a lot of the light, and its visual effects



Bidirectional Ray Tracing
• Combine Photon Tracing and Ray Tracing
• Step 1: Emit photons from the light, bathe objects in those photons, and record 

the result in a light map
• Photons bounce around illuminating shadowed regions, bleeding color, etc.
• Note: light maps don’t change when the camera moves (so they can be precomputed)

• Step 2: Ray trace the scene, using the light map to estimate indirect light (from 
the ignored directions of the hemisphere)

• IMPORTANT: Still treat the most important directions (on the hemisphere) 
explicitly, for increased accuracy
• Shadow Rays for direct illumination
• Reflected Rays
• Transmitted Rays



Light Maps
• Light maps work great for soft shadows, color bleeding, etc.
• They can also generate many other interesting effects:



Recall: Lighting Equation
• Multiplying the BRDF by an incoming irradiance gives the outgoing radiance

𝑑𝐿!	#$%	&!	'(𝜔' , 𝜔!) = 𝐵𝑅𝐷𝐹 𝜔' , 𝜔! 𝑑𝐸'(𝜔')

• For even more realistic lighting, we’ll bounce light all around the scene
• It’s tedious to convert between 𝐸	and 𝐿, so use 𝑑𝐸 = 𝐿𝑑𝜔 cos 𝜃 to obtain:

𝑑𝐿!	#$%	&!	'(𝜔' , 𝜔!) = 𝐵𝑅𝐷𝐹 𝜔' , 𝜔! 𝐿'𝑑𝜔' cos 𝜃'
• Then,

𝐿! 𝜔! = 2
'∈')

𝐵𝑅𝐷𝐹 𝜔' , 𝜔! 𝐿' cos 𝜃' 𝑑𝜔'



Lighting Equation
• Explicitly add the dependencies on the surface location 𝑥 and incoming angle 𝜔!
• Change 𝑖 ∈ 𝑖𝑛 for “incoming directions” to 𝑖 ∈ ℎ𝑒𝑚𝑖 for “hemisphere”
•	Add an emission term 𝐿", so 𝑥 can be a location on the surface of actual lights too

𝐿# 𝑥, 𝜔# = 𝐿" 𝑥, 𝜔# +.
!∈%"&!

𝐵𝑅𝐷𝐹 𝑥,𝜔!, 𝜔# 𝐿!(𝑥, 𝜔!) cos 𝜃! 𝑑𝜔!

• Incoming light from direction 𝜔! left some other surface point 𝑥′ going in direction −𝜔! 
• So, replace 𝐿! 𝑥, 𝜔!  with 𝐿#(𝑥', −𝜔!) 

𝐿# 𝑥, 𝜔# = 𝐿" 𝑥, 𝜔# +.
!∈%"&!

𝐵𝑅𝐷𝐹 𝑥,𝜔!, 𝜔# 𝐿#(𝑥', −𝜔!) cos 𝜃! 𝑑𝜔!



An Implicit Equation
•	Computing the outgoing radiance 𝐿# 𝑥, 𝜔# 	on a particular surface requires knowing the 
outgoing radiance 𝐿#(𝑥', −𝜔!) from all the other (relevant) surfaces
• But the outgoing radiance from those other surfaces (typically) depends on the outgoing 
radiance from the surface under consideration (circular dependencies)

𝐿# 𝑥, 𝜔# = 𝐿" 𝑥, 𝜔# +.
!∈%"&!

𝐿#(𝑥', −𝜔!)	𝐵𝑅𝐷𝐹 𝑥,𝜔!, 𝜔# cos 𝜃! 𝑑𝜔!

• Fredholm Integral Equation of the second kind (extensively studied) given in canonical form 
with kernel 𝑘 𝑢, 𝑣  by:

𝑙 𝑢 = 𝑒 𝑢 + ∫ 𝑙 𝑣 	𝑘 𝑢, 𝑣 𝑑𝑣 

Reflected Light
UNKNOWN

Emission
KNOWN

Reflected Light
UNKNOWN

BRDF
KNOWN

incident angle
KNOWN



Aside: Participating Media
• “Air” typically contains participating 

media (e.g. dust, droplets, smoke, etc.)
• 𝐿 should be defined over all of 3D space
• The incoming light should be considered 

in a sphere centered around each point in 
3D space

• Neglecting this assumes that “air” is a 
vacuum

• This restricts 𝐿 to surfaces



Discretization (of the integral equation)
• Choose 𝑝 points, each representing a chunk of surface area (or chunk of volume 
for participating media), which is a 2D (or 3D) discretization
• For each of the 𝑝 points: Choose 𝑞 outgoing directions, each representing a 
chunk of solid angles of the hemisphere (or sphere), which is a 2D discretization
• 𝑞 can vary from surface chunk to surface chunk

• 𝐿! and 𝐿%  then each have 𝑝 ∗ 𝑞 unknowns, a 4D (or 5D) discretization
• They can thus be represented by vectors: 𝐿 and 𝐸, each with length 𝑝 ∗ 𝑞

• The light transport “kernel” matrix 𝐾 has size 𝑝 ∗ 𝑞 by 𝑝 ∗ 𝑞

• The linear system of equations is: 𝐿 = 𝐸 + 𝐾𝐿 or 𝐼 − 𝐾 𝐿 = 𝐸
• Solution: 𝐿 = 𝐼 − 𝐾 *+𝐸 = 𝐼 + 𝐾 + 𝐾, +⋯ 𝐸
• Since 𝐾 bounces only a fraction of the light (the rest is absorbed), higher powers 
are smaller (and the series can be truncated)



Power Series

𝐿 = 𝐸 + 𝐾𝐸 + 𝐾!𝐸 + 𝐾"𝐸 +⋯

Emission directly 
from Light Sources

Direct Illumination
 (light bounces 

only once) Global Illumination
 (indirect lighting, 

two bounces) Global 
Illumination

 (indirect lighting, 
three bounces)

Etc.



Power Series



Tractability
• A (typical) scene might warrant thousands or tens of thousands of area chunks
• So, 𝑝 could be 1e3, 1e4, 1e5, 1e6, etc.

• Incoming light could vary significantly across the hemisphere
• So, 𝑞 might need to be 1e2, 1e3, 1e4, etc.

• 𝐿 and 𝐸 would then range in length from 1e5 to 1e10
• The matrix 𝐾 would then range in size from 1e5 by 1e5 up to 1e10 by 1e10

• 𝐾 would have between 1e10 and 1e20 entries!

• This tractability analysis is for the 4D problem (5D is even worse)
• The curse of dimensionality makes problems in 4D and 5D (and higher) hard to 
discretize (with numerical quadrature)



Addressing Tractability
• Idea: separate the diffuse and specular contributions (to be treated separately)

Diffuse:
• Assume all materials are purely diffuse (i.e. no specular contributions)
• Compute the view-independent global illumination for the entire scene
• This can be done in a pre-processing step

Specular:
• Compute (view-dependent) specular illumination on-the-fly as the camera moves

• Use Phong Shading (or any other model)



Radiosity and Albedo
• Radiosity: power per unit surface area leaving a surface (similar to irradiance, but outgoing 
instead of incoming):

𝐵 𝑥 =
𝑑Φ
𝑑𝐴

= .
%"&!

𝐿#(𝑥, 𝜔#) cos 𝜃# 𝑑𝜔#

• When 𝐿# is independent of 𝜔# (i.e. purely diffuse):

𝐵 𝑥 =
𝑑Φ
𝑑𝐴

= 𝐿(𝑥).
%"&!

	 cos 𝜃# 𝑑𝜔# = 𝜋𝐿 𝑥

• Albedo: a “reflection coefficient” relating incoming light hitting a surface patch (irradiance 𝐸!) 
to outgoing light emitted in all possible directions

𝜌 𝑥 = .
%"&!

𝐵𝑅𝐷𝐹(𝑥, 𝜔#, 𝜔!) cos 𝜃# 𝑑𝜔#

• When the BRDF is independent of 𝜔#	and 𝜔! (i.e. purely diffuse): 

𝜌 𝑥 = 𝐵𝑅𝐷𝐹(𝑥).
%"&!

	 cos 𝜃# 𝑑𝜔# = 𝜋	𝐵𝑅𝐷𝐹(𝑥)



(Purely Diffuse) Lighting Equation
• Given 𝐿# 𝑥, 𝜔# = 𝐿" 𝑥, 𝜔# + ∫!∈%"&! 𝐿#(𝑥

', −𝜔!)𝐵𝑅𝐷𝐹 𝑥,𝜔!, 𝜔# cos 𝜃! 𝑑𝜔! , multiply 
through by cos𝜃#𝑑𝜔# and integrate over the hemisphere (i.e. 𝑑𝜔#) to obtain:

𝐵 𝑥 = 𝐸 𝑥 +.
!∈%"&!

𝐵(𝑥′)𝐵𝑅𝐷𝐹 𝑥,𝜔!, 𝜔# cos 𝜃! 𝑑𝜔!

• 𝐵 is a 2D function (of 𝑥), whereas 𝐿	was a 4D function (of 𝑥 and 𝜔#)

• Then, assume that all surfaces have a diffuse BRDF independent of angle:

𝐵 𝑥 = 𝐸 𝑥 +
𝜌(𝑥)
𝜋

.
!∈%"&!

𝐵 𝑥' cos 𝜃! 𝑑𝜔!



Recall: Solid Angle vs. Cross-Sectional Area
• The (orthogonal) cross-sectional area is 𝑑𝐴	𝑐𝑜𝑠𝜃
• So, 𝑑𝜔 = ()!"#$%$

*&
= ()	,#-.

*&
 (solid angle varies with tilting 𝜃 and distance 𝑟)

unit
sphere

surface
patch
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Interchange Solid Angle and Surface Area
• Note: 𝑑𝜔 = ()	,#-.

*&  gives 𝑑𝜔! =
()'	,#-.(
/0/' &

&

• So, 𝐵 𝑥 = 𝐸 𝑥 + 1(/)
4 ∫!∈%"&!𝐵 𝑥' cos 𝜃! 𝑑𝜔! is:

𝐵 𝑥 = 𝐸 𝑥 + 𝜌(𝑥).
!∈%"&!

𝐵 𝑥'
cos 𝜃! cos	𝜃#
𝜋 𝑥 − 𝑥' 5

5 𝑑𝐴
'

 

• Let 𝑉 𝑥, 𝑥' = 1 when 𝑥 and 𝑥′ are mutually visible (and 
𝑉 𝑥, 𝑥' = 0 otherwise), then:

𝐵 𝑥 = 𝐸 𝑥 + 𝜌(𝑥).
677	/'

𝐵 𝑥' 𝑉 𝑥, 𝑥'
cos 𝜃! cos	𝜃#
𝜋 𝑥 − 𝑥' 5

5 𝑑𝐴
'
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A Tractable Discretization
• Choose 𝑝 points, each representing a chunk of surface area (a 2D discretization)

• Then 𝐵! = 𝐸! + 𝜌! ∑89!𝐵8 𝐹!8 with a purely geometric 𝐹!8 = 𝑉 𝑥!, 𝑥8
:;< .):;<	.*
4 /)0/* &

& 𝐴8

• Rearrange to 𝐵! − 𝜌! ∑89!𝐵8 𝐹!8 = 𝐸! and put into matrix form:

1 −𝜌!𝐹!"
−𝜌"𝐹"! 1

⋯ −𝜌!𝐹!#
⋯ −𝜌"𝐹"#

⋮ ⋮
−𝜌#𝐹#! −𝜌#𝐹#"

⋱ ⋮
⋯ 1

𝐵!
𝐵"
⋮
𝐵#

=

𝐸!
𝐸"
⋮
𝐸#

• For 𝑝 ranging from 1e3 to 1e6: 𝐵 and 𝐸	have the same size, and the matrix has 1e6 to 1e12 
entries (still large, but 1e4 to 1e8 times smaller than previously)



Form Factor
• Write 𝐹!8	 = 𝑉 𝑥!, 𝑥8

=>)*
))

 and 𝐹8! = 𝑉 𝑥!, 𝑥8
=>)*
)*

 with 

(symmetric) form factor:

R𝐹!8 =
cos 𝜃! cos	𝜃8
𝜋 𝑥! − 𝑥8 5

5 𝐴!𝐴8

• R𝐹!8 represents how the light energy leaving one surface 
impacts the other surface, and vice versa (and only 
depends on the geometry, not on the light)

• The visibility between between 𝑥! and 𝑥8, i.e. 𝑉 𝑥!, 𝑥8 , 
also only depends on the geometry (and can be included 
into R𝐹!8 if desired)



Understanding the Form Factor
• Place a unit hemisphere at a surface point 𝑥!
 
•Project the other surface onto the hemisphere, noting 
that 𝑑𝜔 = ()	,#-.

*&  gives 
)*	:;<.*
/)0/* &

& as the result

• Project the result downwards onto the circular base 
of the hemisphere, which multiples by cos 𝜃! 

• Recall ∫!∈#$%! cos 𝜃! 𝑑𝜔! = 𝜋, the area of the unit circle
• Divide the result by the total area 𝜋 to get the 
fraction of the circle occupied

• Overall, this gives: 𝐹!8 =
:;< .):;<	.*
4 /)0/* &

& 𝐴8



Implementation
• Create a hemicube, and divide each face into sub-
squares (as small as desired)
• For each sub-square, use hemisphere projection (from 
the last slide) to pre-compute its contribution to 𝐹!8

• Place the hemicube at a surface point 𝑥!	
• A surface patch (from another object) is projected onto 
the hemicube in order to approximate 𝐹!8 (using the pre-
computed values for the sub-squares)
• The five hemicube faces can be treated as image planes 
and the sub-squares as pixels, making this equivalent to 
scanline rasterization
• The depth buffer can be used to detect occlusions, 
which are used the visibility term



Hemicube Scanline Rasterization



Iterative Solvers
• For large matrices, iterative solvers are typically far more accurate than direct methods (that 
compute an inverse)
• Iterative methods start with an initial guess, and subsequently iteratively improve it

• Consider 2 1
1 2

𝑥
𝑦 = 8

10  with exact solution 
𝑥
𝑦 = 2

4
• Start with an initial guess of 

𝑥
𝑦 = 0

0

• Jacobi iteration (solve both equations using the current guess):

• 𝑥?"@ = A0B(+,

5  and 𝑦?"@ = CD0/(+,

5

• Gauss Seidal iteration (always use the most up to date values):

• 𝑥,E**"?F = A0B-.%%$/0

5  and 𝑦,E**"?F = CD0/-.%%$/0

5  



Jacobi vs. Gauss-Seidal
Iteration Jacobi Gauss Seidel

x y x y

1 0 0 0 0

2 4 5 4 3

3 1.5 3 2.5 3.75

4 2.5 4.25 2.125 3.9375

5 1.875 3.75 2.03125 3.984375

6 2.125 4.0625 2.007813 3.996094

7 1.96875 3.9375 2.001953 3.999023

8 2.03125 4.015625 2.000488 3.999756

9 1.9921875 3.984375 2.000122 3.999939

10 2.0078125 4.00390625 2.000031 3.999985

11 1.998046875 3.99609375 2.000008 3.999996

12 2.001953125 4.000976563 2.000002 3.999999

13 1.999511719 3.999023438 2 4

14 2.000488281 4.000244141 2 4

15 1.99987793 3.999755859 2 4

16 2.00012207 4.000061035 2 4

17 1.999969482 3.999938965 2 4

18 2.000030518 4.000015259 2 4

19 1.999992371 3.999984741 2 4

20 2.000007629 4.000003815 2 4



Better Initial Guess
Iteration Jacobi Gauss Seidal

x y x y

1 2 3 2 3

2 2.5 4 2.5 3.75

3 2 3.75 2.125 3.9375

4 2.125 4 2.03125 3.984375

5 2 3.9375 2.007813 3.996094

6 2.03125 4 2.001953 3.999023

7 2 3.984375 2.000488 3.999756

8 2.0078125 4 2.000122 3.999939

9 2 3.99609375 2.000031 3.999985

10 2.001953125 4 2.000008 3.999996

11 2 3.999023438 2.000002 3.999999

12 2.000488281 4 2 4

13 2 3.999755859 2 4

14 2.00012207 4 2 4

15 2 3.999938965 2 4

16 2.000030518 4 2 4

17 2 3.999984741 2 4

18 2.000007629 4 2 4

19 2 3.999996185 2 4

20 2.000001907 4 2 4



Iterative Radiosity
• Gathering - update one surface by collecting light energy from all surfaces
• Shooting - update all surfaces by distributing light energy from one surface
• Sorting and Shooting - choose the surface with the greatest un-shot light energy and use 

shooting to distribute it to other surfaces
• start by shooting light energy out of the lights onto objects (the brightest light goes first)
• then the object that would reflect the most light goes next, etc.

• Sorting and Shooting with Ambient - start with an initial guess for ambient lighting and do 
sorting and shooting afterwards



Iterative Radiosity


