Global Illumination
Photon Tracing

• For each light, choose a number of outgoing directions (on the hemisphere or sphere); emit a photon in each direction

• Each photon travels in a straight line, until it intersects an object

• If Absorbed: terminate photon (it doesn’t get to the film)

• If Reflected/Transmitted/Scattered: photon goes off in a new direction (until it again intersects an object)

• If a photon goes through the camera aperture and hits the film, it contributes to the final image
Photon Tracing

• Most of the light never hits the film (far too inefficient, impractical)
(Backward) Path Tracing

• For each pixel, send a ray through the aperture to **backward** trace a photon that would hit the pixel (same as ray tracing)

• If the ray hits an object, cast rays in **all directions of the hemisphere** in order to backwards trace incoming photons
 - Every new ray that hits another surface spawns an entire hemisphere of rays of its own (exponential growth, impractical)

• Follow all rays until they hit a light source (and terminate)

• A terminated ray (**only**) gives a **path** from the light source to the pixel
 - Emit photons along this path, bounce them off all the objects along the path, check to see if absorbed (otherwise, continue on towards the pixel)
 - Some percentage of the photons are absorbed resulting in a specific color/brightness of light hitting the pixel (along that path)
(Backward) Path Tracing

- Most paths take too long to find their way back to the light source (inefficient)
Ray Tracing (a more efficient Path Tracing)

• Ignore most incoming directions on the hemisphere, only keeping the most important ones:

• Rays incoming directly from the light source have a lot of photons
 • A Shadow Ray is used to account for this incoming light
 • Called direct illumination (since light is coming directly from a light source)

• Reflective objects bounce a lot of photons in the mirror reflection direction
 • This incoming light is accounted for with a Reflected Ray

• Transparent objects transmit a lot of photons along the transmitted ray direction
 • This incoming light is accounted for with a Transmitted Ray

• Downside: ignoring a lot of the light, and its visual effects
Bidirectional Ray Tracing

• Combine Photon Tracing and Ray Tracing
• Step 1: Emit photons from the light, bathe objects in those photons, and record the result in a light map
 • Photons bounce around illuminating shadowed regions, bleeding color, etc.
 • Note: light maps don’t change when the camera moves (so they can be precomputed)
• Step 2: Ray trace the scene, using the light map to estimate indirect light (from the ignored directions of the hemisphere)

• IMPORTANT: Still treat the most important directions (on the hemisphere) explicitly, for increased accuracy
 • Shadow Rays for direct illumination
 • Reflected Rays
 • Transmitted Rays
Light Maps

• Light maps work great for soft shadows, color bleeding, etc.
• They can also generate many other interesting effects:
Recall: Lighting Equation

• Multiplying the BRDF by an incoming irradiance gives the outgoing radiance
 \[dL_{o\ due\ to\ i}(\omega_i, \omega_o) = BRDF(\omega_i, \omega_o)dE_i(\omega_i) \]

• For even more realistic lighting, we’ll bounce light all around the scene
• It’s tedious to convert between \(E \) and \(L \), so use \(dE = Ld\omega \cos \theta \) to obtain:
 \[dL_{o\ due\ to\ i}(\omega_i, \omega_o) = BRDF(\omega_i, \omega_o)L_i d\omega_i \cos \theta_i \]
• Then,
 \[
 L_o(\omega_o) = \int_{i\in in} BRDF(\omega_i, \omega_o)L_i \cos \theta_i \ d\omega_i
 \]
Lighting Equation

- Explicitly add the dependencies on the surface location x and incoming angle ω_i
- Change $i \in \text{in}$ for “incoming directions” to $i \in \text{hemi}$ for “hemisphere”
- Add an emission term L_e, so x can be a location on the surface of actual lights too

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{hemi}} \text{BRDF}(x, \omega_i, \omega_o)L_i(x, \omega_i) \cos \theta_i \, d\omega_i \]

- Incoming light from direction ω_i left some other surface point x' going in direction $-\omega_i$
- So, replace $L_i(x, \omega_i)$ with $L_o(x', -\omega_i)$

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{hemi}} \text{BRDF}(x, \omega_i, \omega_o)L_o(x', -\omega_i) \cos \theta_i \, d\omega_i \]
An Implicit Equation

- Computing the outgoing radiance $L_o(x, \omega_o)$ on a particular surface requires knowing the outgoing radiance $L_o(x', -\omega_i)$ from all the other (relevant) surfaces.
- But the outgoing radiance from those other surfaces (typically) depends on the outgoing radiance from the surface under consideration (circular dependencies).

$$L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i\in\text{hemi}} L_o(x', -\omega_i) \cdot \text{BRDF}(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i$$

- Fredholm Integral Equation of the second kind (extensively studied) given in canonical form with kernel $k(u, v)$ by:

$$l(u) = e(u) + \int l(v) \cdot k(u, v) \, dv$$
Aside: Participating Media

- “Air” typically contains participating media (e.g. dust, droplets, smoke, etc.)
- L should be defined over all of 3D space
- The incoming light should be considered in a sphere centered around each point in 3D space
- Neglecting this assumes that “air” is a vacuum
- This restricts L to surfaces
Discretization (of the integral equation)

• Choose p points, each representing a chunk of surface area (or chunk of volume for participating media), which is a 2D (or 3D) discretization

• For each of the p points: Choose q outgoing directions, each representing a chunk of solid angles of the hemisphere (or sphere), which is a 2D discretization
 • q can vary from surface chunk to surface chunk

• L_o and L_e then each have $p \times q$ unknowns, a 4D (or 5D) discretization
 • They can thus be represented by vectors: L and E, each with length $p \times q$

• The light transport “kernel” matrix K has size $p \times q$ by $p \times q$

• The linear system of equations is: $L = E + KL$ or $(I - K)L = E$

• Solution: $L = (I - K)^{-1}E = (I + K + K^2 + \cdots)E$

• Since K bounces only a fraction of the light (the rest is absorbed), higher powers are smaller (and the series can be truncated)
Power Series

\[L = E + KE + K^2E + K^3E + \cdots \]

- Emission directly from Light Sources
- Direct Illumination (light bounces only once)
- Global Illumination (indirect lighting, two bounces)
- Global Illumination (indirect lighting, three bounces)
- Etc.
Power Series
Tractability

• A (typical) scene might warrant thousands or tens of thousands of area chunks
 • So, \(p \) could be 1e3, 1e4, 1e5, 1e6, etc.
• Incoming light could vary significantly across the hemisphere
 • So, \(q \) might need to be 1e2, 1e3, 1e4, etc.
• \(L \) and \(E \) would then range in length from 1e5 to 1e10
• The matrix \(K \) would then range in size from 1e5 by 1e5 up to 1e10 by 1e10

• \(K \) would have between 1e10 and 1e20 entries!

• This tractability analysis is for the 4D problem (5D is even worse)
• The curse of dimensionality makes problems in 4D and 5D (and higher) hard to discretize (with numerical quadrature)
Addressing Tractability

• Idea: separate the diffuse and specular contributions (to be treated separately)

Diffuse:
• Assume all materials are purely diffuse (i.e. no specular contributions)
• Compute the view-independent global illumination for the entire scene
• This can be done in a pre-processing step

Specular:
• Compute (view-dependent) specular illumination on-the-fly as the camera moves
 • Use Phong Shading (or any other model)
Radiosity and Albedo

- **Radiosity**: power per unit surface area leaving a surface (similar to irradiance, but outgoing instead of incoming):

 \[B(x) = \frac{d\Phi}{dA} = \int_{\text{hemi}} L_o(x, \omega_o) \cos \theta_o \, d\omega_o \]

- When \(L_o \) is independent of \(\omega_o \) (i.e. purely diffuse):

 \[B(x) = \frac{d\Phi}{dA} = L(x) \int_{\text{hemi}} \cos \theta_o \, d\omega_o = \pi L(x) \]

- **Albedo**: a “reflection coefficient” relating incoming light hitting a surface patch (irradiance \(E_i \)) to outgoing light emitted in all possible directions

 \[\rho(x) = \int_{\text{hemi}} \text{BRDF}(x, \omega_o, \omega_i) \cos \theta_o \, d\omega_o \]

- When the BRDF is independent of \(\omega_o \) and \(\omega_i \) (i.e. purely diffuse):

 \[\rho(x) = \text{BRDF}(x) \int_{\text{hemi}} \cos \theta_o \, d\omega_o = \pi \text{BRDF}(x) \]
(Purely Diffuse) Lighting Equation

- Given \(L_0(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{hemi}} L_0(x', -\omega_i) \text{BRDF}(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i \), multiply through by \(\cos \theta_o \, d\omega_o \) and integrate over the hemisphere (i.e. \(d\omega_o \)) to obtain:

\[
B(x) = E(x) + \int_{i \in \text{hemi}} B(x') \text{BRDF}(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i
\]

- \(B \) is a 2D function (of \(x \)), whereas \(L \) was a 4D function (of \(x \) and \(\omega_o \))

- Then, assume that all surfaces have a diffuse BRDF independent of angle:

\[
B(x) = E(x) + \frac{\rho(x)}{\pi} \int_{i \in \text{hemi}} B(x') \cos \theta_i \, d\omega_i
\]
Recall: Solid Angle vs. Cross-Sectional Area

- The (orthogonal) cross-sectional area is $dA \cos \theta$
- So, $d\omega = \frac{dA_{\text{sphere}}}{r^2} = \frac{dA \cos \theta}{r^2}$ (solid angle varies with tilting θ and distance r)
Interchange Solid Angle and Surface Area

• Note: \(d\omega = \frac{dA \cos \theta}{r^2} \) gives \(d\omega_i = \frac{dA' \cos \theta_o}{\|x-x'\|_2^2} \)

• So, \(B(x) = E(x) + \frac{\rho(x)}{\pi} \int_{i \in \text{hemi}} B(x') \cos \theta_i \ d\omega_i \) is:

\[
B(x) = E(x) + \rho(x) \int_{i \in \text{hemi}} B(x') \frac{\cos \theta_i \cos \theta_o}{\pi \|x - x'\|_2^2} dA'
\]

• Let \(V(x, x') = 1 \) when \(x \) and \(x' \) are mutually visible (and \(V(x, x') = 0 \) otherwise), then:

\[
B(x) = E(x) + \rho(x) \int_{\text{all } x'} B(x') V(x, x') \frac{\cos \theta_i \cos \theta_o}{\pi \|x - x'\|_2^2} dA'
\]
A Tractable Discretization

- Choose p points, each representing a chunk of surface area (a 2D discretization)
- Then $B_i = E_i + \rho_i \sum_{j \neq i} B_j F_{ij}$ with a purely geometric $F_{ij} = V(x_i, x_j) \frac{\cos \theta_i \cos \theta_j}{\pi \|x_i - x_j\|_2^2} A_j$
- Rearrange to $B_i - \rho_i \sum_{j \neq i} B_j F_{ij} = E_i$ and put into matrix form:

$$
\begin{pmatrix}
1 & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1p} \\
-\rho_2 F_{21} & 1 & \cdots & -\rho_2 F_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_p F_{p1} & -\rho_p F_{p2} & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_p
\end{pmatrix} =
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_p
\end{pmatrix}
$$

- For p ranging from $1e3$ to $1e6$: B and E have the same size, and the matrix has $1e6$ to $1e12$ entries (still large, but $1e4$ to $1e8$ times smaller than previously)
Form Factor

- Write $F_{ij} = V(x_i, x_j) \frac{\hat{F}_{ij}}{A_i}$ and $F_{ji} = V(x_i, x_j) \frac{\hat{F}_{ij}}{A_j}$ with (symmetric) form factor:

$$\hat{F}_{ij} = \cos \theta_i \cos \theta_j \frac{\pi \| x_i - x_j \|^2}{2 A_i A_j}$$

- \hat{F}_{ij} represents how the light energy leaving one surface impacts the other surface, and vice versa (and only depends on the geometry, not on the light)

- The visibility between between x_i and x_j, i.e. $V(x_i, x_j)$, also only depends on the geometry (and can be included into \hat{F}_{ij} if desired)
Understanding the Form Factor

• Place a unit hemisphere at a surface point x_i

• Project the other surface onto the hemisphere, noting that $d\omega = \frac{dA \cos \theta}{r^2}$ gives $\frac{A_j \cos \theta_j}{\|x_i - x_j\|_2}$ as the result

• Project the result downwards onto the circular base of the hemisphere, which multiples by $\cos \theta_i$

 • Recall $\int_{i \in \text{hemi}} \cos \theta_i \, d\omega_i = \pi$, the area of the unit circle

• Divide the result by the total area π to get the fraction of the circle occupied

• Overall, this gives: $F_{ij} = \frac{\cos \theta_i \cos \theta_j}{\pi \|x_i - x_j\|_2^2} A_j$
Implementation

- Create a hemicube, and divide each face into sub-squares (as small as desired)
- For each sub-square, use hemisphere projection (from the last slide) to pre-compute its contribution to F_{ij}
- Place the hemicube at a surface point x_i
- A surface patch (from another object) is projected onto the hemicube in order to approximate F_{ij} (using the pre-computed values for the sub-squares)
- The five hemicube faces can be treated as image planes and the sub-squares as pixels, making this equivalent to scanline rasterization
- The depth buffer can be used to detect occlusions, which are used the visibility term
Iterative Solvers

• For large matrices, iterative solvers are typically far more accurate than direct methods (that compute an inverse)
• Iterative methods start with an initial guess, and subsequently iteratively improve it

• Consider $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \end{pmatrix}$ with exact solution $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$
• Start with an initial guess of $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• **Jacobi** iteration (solve both equations using the current guess):
 \[x^{\text{new}} = \frac{8-y^{\text{old}}}{2} \quad \text{and} \quad y^{\text{new}} = \frac{10-x^{\text{old}}}{2} \]

• **Gauss Seidal** iteration (always use the most up to date values):
 \[x^{\text{current}} = \frac{8-y^{\text{current}}}{2} \quad \text{and} \quad y^{\text{current}} = \frac{10-x^{\text{current}}}{2} \]
Jacobi vs. Gauss-Seidel

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Jacobi</th>
<th>Gauss Seidel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>4.25</td>
</tr>
<tr>
<td>5</td>
<td>1.875</td>
<td>3.75</td>
</tr>
<tr>
<td>6</td>
<td>2.125</td>
<td>4.0625</td>
</tr>
<tr>
<td>7</td>
<td>1.96875</td>
<td>3.9375</td>
</tr>
<tr>
<td>8</td>
<td>2.03125</td>
<td>4.015625</td>
</tr>
<tr>
<td>9</td>
<td>1.9921875</td>
<td>3.984375</td>
</tr>
<tr>
<td>10</td>
<td>2.0078125</td>
<td>4.00390625</td>
</tr>
<tr>
<td>11</td>
<td>1.998046875</td>
<td>3.99609375</td>
</tr>
<tr>
<td>12</td>
<td>2.001953125</td>
<td>4.000976563</td>
</tr>
<tr>
<td>13</td>
<td>1.999511719</td>
<td>3.999023438</td>
</tr>
<tr>
<td>14</td>
<td>2.000488281</td>
<td>4.000244141</td>
</tr>
<tr>
<td>15</td>
<td>1.99987793</td>
<td>3.999755859</td>
</tr>
<tr>
<td>16</td>
<td>2.00012207</td>
<td>4.000061035</td>
</tr>
<tr>
<td>17</td>
<td>1.999969482</td>
<td>3.999938965</td>
</tr>
<tr>
<td>18</td>
<td>2.000030518</td>
<td>4.000015259</td>
</tr>
<tr>
<td>19</td>
<td>1.999992371</td>
<td>3.999984741</td>
</tr>
<tr>
<td>20</td>
<td>2.000007629</td>
<td>4.000003815</td>
</tr>
</tbody>
</table>
Better Initial Guess

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Jacobi</th>
<th>Gauss Seidal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3.75</td>
</tr>
<tr>
<td>4</td>
<td>2.125</td>
<td>3.75</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3.9375</td>
</tr>
<tr>
<td>6</td>
<td>2.03125</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3.984375</td>
</tr>
<tr>
<td>8</td>
<td>2.0078125</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3.99609375</td>
</tr>
<tr>
<td>10</td>
<td>2.001953125</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3.999023438</td>
</tr>
<tr>
<td>12</td>
<td>2.000488281</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3.999755869</td>
</tr>
<tr>
<td>14</td>
<td>2.0012207</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3.999938965</td>
</tr>
<tr>
<td>16</td>
<td>2.000030518</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>3.999984741</td>
</tr>
<tr>
<td>18</td>
<td>2.000007629</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3.999996185</td>
</tr>
<tr>
<td>20</td>
<td>2.000001907</td>
<td>4</td>
</tr>
</tbody>
</table>
Iterative Radiosity

• **Gathering** - update one surface by collecting light energy from all surfaces
• **Shooting** - update all surfaces by distributing light energy from one surface
• **Sorting and Shooting** - choose the surface with the greatest un-shot light energy and use shooting to distribute it to other surfaces
 - start by shooting light energy out of the lights onto objects (the brightest light goes first)
 - then the object that would reflect the most light goes next, etc.
• **Sorting and Shooting with Ambient** - start with an initial guess for ambient lighting and do sorting and shooting afterwards
Iterative Radiosity