Global Illumination

Photon Tracing

- For each light, choose a number of outgoing directions (on the hemisphere or sphere); emit a photon in each direction
- Each photon travels in a straight line, until it intersects an object
- If Absorbed: terminate photon (it doesn't get to the film)
- If Reflected/Transmitted/Scattered: photon goes off in a new direction (until it again intersects an object)
- If a photon goes through the camera aperture and hits the film, it contributes to the final image

Photon Tracing

- Most of the light never hits the film (far too inefficient, impractical)

(Backward) Path Tracing

- For each pixel, send a ray through the aperture to backward trace a photon that would hit the pixel (same as ray tracing)
- If the ray hits an object, cast rays in all directions of the hemisphere in order to backwards trace incoming photons
- Every new ray that hits another surface spawns an entire hemisphere of rays of its own (exponential growth, impractical)
- Follow all rays until they hit a light source (and terminate)
- A terminated ray (only) gives a path from the light source to the pixel
- Emit photons along this path, bounce them off all the objects along the path, check to see if absorbed (otherwise, continue on towards the pixel)
- Some percentage of the photons are absorbed resulting in a specific color/brightness of light hitting the pixel (along that path)

(Backward) Path Tracing

- Most paths take too long to find their way back to the light source (inefficient)

Ray Tracing (a more efficient Path Tracing)

- Ignore most incoming directions on the hemisphere, only keeping the most important ones:
- Rays incoming directly from the light source have a lot of photons
- A Shadow Ray is used to account for this incoming light
- Called direct illumination (since light is coming directly from a light source)
- Reflective objects bounce a lot of photons in the mirror reflection direction
- This incoming light is accounted for with a Reflected Ray
- Transparent objects transmit a lot of photons along the transmitted ray direction
- This incoming light is accounted for with a Transmitted Ray
- Downside: ignoring a lot of the light, and its visual effects

Bidirectional Ray Tracing

- Combine Photon Tracing and Ray Tracing
- Step 1: Emit photons from the light, bathe objects in those photons, and record the result in a light map
- Photons bounce around illuminating shadowed regions, bleeding color, etc.
- Note: light maps don't change when the camera moves (so they can be precomputed)
- Step 2: Ray trace the scene, using the light map to estimate indirect light (from the ignored directions of the hemisphere)
- IMPORTANT: Still treat the most important directions (on the hemisphere) explicitly, for increased accuracy
- Shadow Rays for direct illumination
- Reflected Rays
- Transmitted Rays

Light Maps

- Light maps work great for soft shadows, color bleeding, etc.
- They can also generate many other interesting effects:

Recall: Lighting Equation

- Multiplying the BRDF by an incoming irradiance gives the outgoing radiance

$$
d L_{o \text { due to } i}\left(\omega_{i}, \omega_{o}\right)=\operatorname{BRDF}\left(\omega_{i}, \omega_{o}\right) d E_{i}\left(\omega_{i}\right)
$$

- For even more realistic lighting, we'll bounce light all around the scene
- It's tedious to convert between E and L, so use $d E=L d \omega \cos \theta$ to obtain:

$$
d L_{o \text { due to } i}\left(\omega_{i}, \omega_{o}\right)=B R D F\left(\omega_{i}, \omega_{o}\right) L_{i} d \omega_{i} \cos \theta_{i}
$$

- Then,

$$
L_{o}\left(\omega_{o}\right)=\int_{i \in i n} B R D F\left(\omega_{i}, \omega_{o}\right) L_{i} \cos \theta_{i} d \omega_{i}
$$

Lighting Equation

- Explicitly add the dependencies on the surface location x and incoming angle ω_{i}
- Change $i \in$ in for "incoming directions" to $i \in$ hemi for "hemisphere"
- Add an emission term L_{e}, so x can be a location on the surface of actual lights too

$$
L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{i \in h e m i} B R D F\left(x, \omega_{i}, \omega_{o}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Incoming light from direction ω_{i} left some other surface point x^{\prime} going in direction $-\omega_{i}$
- So, replace $L_{i}\left(x, \omega_{i}\right)$ with $L_{o}\left(x^{\prime},-\omega_{i}\right)$

$$
L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{i \in h e m i} B R D F\left(x, \omega_{i}, \omega_{o}\right) L_{o}\left(x^{\prime},-\omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

An Implicit Equation

- Computing the outgoing radiance $L_{0}\left(x, \omega_{0}\right)$ on a particular surface requires knowing the outgoing radiance $L_{o}\left(x^{\prime},-\omega_{i}\right)$ from all the other (relevant) surfaces
- But the outgoing radiance from those other surfaces (typically) depends on the outgoing radiance from the surface under consideration (circular dependencies)

$$
\begin{array}{cccccc}
L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{i \in h e m i} & L_{o}\left(x^{\prime},-\omega_{i}\right) & B R D F\left(x, \omega_{i}, \omega_{o}\right) \cos \theta_{i} d \omega_{i} \\
\text { Reflected Light } & \text { Emission } & \text { Reflected Light } & \text { BRDF } & \text { incident angle } \\
\text { UNKNOWN } & \text { KNOWN } & \text { UNKNOWN } & \text { KNOWN } & \text { KNOWN }
\end{array}
$$

- Fredholm Integral Equation of the second kind (extensively studied) given in canonical form with kernel $k(u, v)$ by:

$$
l(u)=e(u)+\int l(v) k(u, v) d v
$$

Aside: Participating Media

- "Air" typically contains participating media (e.g. dust, droplets, smoke, etc.)
- L should be defined over all of 3D space
- The incoming light should be considered in a sphere centered around each point in 3D space
- Neglecting this assumes that "air" is a vacuum
- This restricts L to surfaces

Discretization (of the integral equation)

- Choose p points, each representing a chunk of surface area (or chunk of volume for participating media), which is a 2D (or 3D) discretization
- For each of the p points: Choose q outgoing directions, each representing a chunk of solid angles of the hemisphere (or sphere), which is a 2D discretization - q can vary from surface chunk to surface chunk
- L_{o} and L_{e} then each have $p * q$ unknowns, a 4D (or 5D) discretization
- They can thus be represented by vectors: L and E, each with length $p * q$
- The light transport "kernel" matrix K has size $p * q$ by $p * q$
-The linear system of equations is: $L=E+K L$ or $(I-K) L=E$
- Solution: $L=(I-K)^{-1} E=\left(I+K+K^{2}+\cdots\right) E$
- Since K bounces only a fraction of the light (the rest is absorbed), higher powers are smaller (and the series can be truncated)

Power Series

$L=E+K E+K^{2} E+K^{3} E+\cdots$

Power Series

Tractability

- A (typical) scene might warrant thousands or tens of thousands of area chunks - So, p could be 1e3, 1e4, 1e5, 1e6, etc.
- Incoming light could vary significantly across the hemisphere
- So, q might need to be $1 \mathrm{e} 2,1 \mathrm{e} 3,1 \mathrm{e} 4$, etc.
- L and E would then range in length from 1e5 to 1e10
- The matrix K would then range in size from 1e5 by 1 e 5 up to 1 e 10 by 1 e 10
- K would have between 1 e 10 and 1 e 20 entries!
- This tractability analysis is for the 4D problem (5D is even worse)
- The curse of dimensionality makes problems in 4D and 5D (and higher) hard to discretize (with numerical quadrature)

Addressing Tractability

- Idea: separate the diffuse and specular contributions (to be treated separately)

Diffuse:

- Assume all materials are purely diffuse (i.e. no specular contributions)
- Compute the view-independent global illumination for the entire scene
- This can be done in a pre-processing step

Specular:

- Compute (view-dependent) specular illumination on-the-fly as the camera moves
- Use Phong Shading (or any other model)

Radiosity and Albedo

- Radiosity: power per unit surface area leaving a surface (similar to irradiance, but outgoing instead of incoming):

$$
B(x)=\frac{d \Phi}{d A}=\int_{h e m i} L_{o}\left(x, \omega_{o}\right) \cos \theta_{o} d \omega_{o}
$$

- When L_{o} is independent of ω_{o} (i.e. purely diffuse):

$$
B(x)=\frac{d \Phi}{d A}=L(x) \int_{h e m i} \cos \theta_{o} d \omega_{o}=\pi L(x)
$$

- Albedo: a "reflection coefficient" relating incoming light hitting a surface patch (irradiance E_{i}) to outgoing light emitted in all possible directions

$$
\rho(x)=\int_{\text {hemi }} B R D F\left(x, \omega_{o}, \omega_{i}\right) \cos \theta_{o} d \omega_{o}
$$

- When the BRDF is independent of ω_{o} and ω_{i} (i.e. purely diffuse):

$$
\rho(x)=B R D F(x) \int_{\text {hemi }} \cos \theta_{o} d \omega_{o}=\pi B R D F(x)
$$

(Purely Diffuse) Lighting Equation

- Given $L_{o}\left(x, \omega_{o}\right)=L_{e}\left(x, \omega_{o}\right)+\int_{i \in h e m i} L_{o}\left(x^{\prime},-\omega_{i}\right) B R D F\left(x, \omega_{i}, \omega_{o}\right) \cos \theta_{i} d \omega_{i}$, multiply through by $\cos \theta_{o} d \omega_{o}$ and integrate over the hemisphere (i.e. $\left.d \omega_{o}\right)$ to obtain:

$$
B(x)=E(x)+\int_{i \in h e m i} B\left(x^{\prime}\right) B R D F\left(x, \omega_{i}, \omega_{o}\right) \cos \theta_{i} d \omega_{i}
$$

- B is a 2D function (of x), whereas L was a 4D function (of x and ω_{o})
- Then, assume that all surfaces have a diffuse BRDF independent of angle:

$$
B(x)=E(x)+\frac{\rho(x)}{\pi} \int_{i \in h e m i} B\left(x^{\prime}\right) \cos \theta_{i} d \omega_{i}
$$

Recall: Solid Angle vs. Cross-Sectional Area

- The (orthogonal) cross-sectional area is $d A \cos \theta$
- So, $d \omega=\frac{d A_{\text {sphere }}}{r^{2}}=\frac{d A \cos \theta}{r^{2}}$ (solid angle varies with tilting θ and distance r)

Interchange Solid Angle and Surface Area

- Note: $d \omega=\frac{d A \cos \theta}{r^{2}}$ gives $d \omega_{i}=\frac{d A^{\prime} \cos \theta_{0}}{\left\|x-x^{\prime}\right\|_{2}^{2}}$
- So, $B(x)=E(x)+\frac{\rho(x)}{\pi} \int_{i \in h e m i} B\left(x^{\prime}\right) \cos \theta_{i} d \omega_{i}$ is:

$$
B(x)=E(x)+\rho(x) \int_{i \in h e m i} B\left(x^{\prime}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\pi\left\|x-x^{\prime}\right\|_{2}^{2}} d A^{\prime}
$$

- Let $V\left(x, x^{\prime}\right)=1$ when x and x^{\prime} are mutually visible (and $V\left(x, x^{\prime}\right)=0$ otherwise), then:

$$
B(x)=E(x)+\rho(x) \int_{\text {all } x^{\prime}} B\left(x^{\prime}\right) V\left(x, x^{\prime}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\pi\left\|x-x^{\prime}\right\|_{2}^{2}} d A^{\prime}
$$

A Tractable Discretization

- Choose p points, each representing a chunk of surface area (a 2 D discretization)
- Then $B_{i}=E_{i}+\rho_{i} \sum_{j \neq i} B_{j} F_{i j}$ with a purely geometric $F_{i j}=V\left(x_{i}, x_{j}\right) \frac{\cos \theta_{i} \cos \theta_{j}}{\pi\left\|x_{i}-x_{j}\right\|_{2}^{2}} A_{j}$
- Rearrange to $B_{i}-\rho_{i} \sum_{j \neq i} B_{j} F_{i j}=E_{i}$ and put into matrix form:

$$
\left(\begin{array}{cccc}
1 & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 p} \\
-\rho_{2} F_{21} & 1 & \cdots & -\rho_{2} F_{2 p} \\
\vdots & \vdots & & \ddots \\
\vdots \\
-\rho_{p} F_{p 1} & -\rho_{p} F_{p 2} & & \cdots
\end{array}\right)\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{p}
\end{array}\right)=\left(\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{p}
\end{array}\right)
$$

- For p ranging from 1e3 to 1e6: B and E have the same size, and the matrix has 1e6 to 1e12 entries (still large, but 1 e 4 to 1 e 8 times smaller than previously)

Form Factor

- Write $F_{i j}=V\left(x_{i}, x_{j}\right) \frac{\hat{F}_{i j}}{A_{i}}$ and $F_{j i}=V\left(x_{i}, x_{j}\right) \frac{\hat{F}_{i j}}{A_{j}}$ with (symmetric) form factor:

$$
\hat{F}_{i j}=\frac{\cos \theta_{i} \cos \theta_{j}}{\pi\left\|x_{i}-x_{j}\right\|_{2}^{2}} A_{i} A_{j}
$$

- $\hat{F}_{i j}$ represents how the light energy leaving one surface impacts the other surface, and vice versa (and only depends on the geometry, not on the light)
- The visibility between between x_{i} and x_{j}, i.e. $V\left(x_{i}, x_{j}\right)$, also only depends on the geometry (and can be included into $\widehat{F}_{i j}$ if desired)

Understanding the Form Factor

- Place a unit hemisphere at a surface point x_{i}
-Project the other surface onto the hemisphere, noting that $d \omega=\frac{d A \cos \theta}{r^{2}}$ gives $\frac{A_{j} \cos \theta_{j}}{\left\|x_{i}-x_{j}\right\|_{2}^{2}}$ as the result
- Project the result downwards onto the circular base of the hemisphere, which multiples by $\cos \theta_{i}$
- Recall $\int_{i \in \text { hem } i} \cos \theta_{i} d \omega_{i}=\pi$, the area of the unit circle
- Divide the result by the total area π to get the fraction of the circle occupied
- Overall, this gives: $F_{i j}=\frac{\cos \theta_{i} \cos \theta_{j}}{\pi\left\|x_{i}-x_{j}\right\|_{2}^{2}} A_{j}$

Implementation

- Create a hemicube, and divide each face into subsquares (as small as desired)
- For each sub-square, use hemisphere projection (from the last slide) to pre-compute its contribution to $F_{i j}$
- Place the hemicube at a surface point x_{i}
- A surface patch (from another object) is projected onto the hemicube in order to approximate $F_{i j}$ (using the precomputed values for the sub-squares)
- The five hemicube faces can be treated as image planes and the sub-squares as pixels, making this equivalent to scanline rasterization

- The depth buffer can be used to detect occlusions, which are used the visibility term

Hemicube Scanline Rasterization

Iterative Solvers

- For large matrices, iterative solvers are typically far more accurate than direct methods (that compute an inverse)
- Iterative methods start with an initial guess, and subsequently iteratively improve it
- Consider $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{x}{y}=\binom{8}{10}$ with exact solution $\binom{x}{y}=\binom{2}{4}$
- Start with an initial guess of $\binom{x}{y}=\binom{0}{0}$
- Jacobi iteration (solve both equations using the current guess):
- $x^{\text {new }}=\frac{8-y^{\text {old }}}{2}$ and $y^{\text {new }}=\frac{10-x^{\text {old }}}{2}$
- Gauss Seidal iteration (always use the most up to date values):
- $x^{\text {current }}=\frac{8-y^{\text {current }}}{2}$ and $y^{\text {current }}=\frac{10-x^{\text {current }}}{2}$

Jacobi vs. Gauss-Seidal

Iteration	Jacobi		Gauss Seidel	
	x	y	x	y
1	0	0	0	0
2	4	5	4	3
3	1.5	3	2.5	3.75
4	2.5	4.25	2.125	3.9375
5	1.875	3.75	2.03125	3.984375
6	2.125	4.0625	2.007813	3.996094
7	1.96875	3.9375	2.001953	3.999023
8	2.03125	4.015625	2.000488	3.999756
9	1.9921875	3.984375	2.000122	3.999939
10	2.0078125	4.00390625	2.000031	3.999985
11	1.998046875	3.99609375	2.000008	3.999996
12	2.001953125	4.000976563	2.000002	3.999999
13	1.999511719	3.999023438	2	4
14	2.000488281	4.000244141	2	4
15	1.99987793	3.999755859	2	4
16	2.00012207	4.000061035	2	4
17	1.999969482	3.999938965	2	4
18	2.000030518	4.000015259	2	4
19	1.999992371	3.999984741	2	4
20	2.000007629	4.000003815	2	4

Better Initial Guess

Iterative Radiosity

- Gathering - update one surface by collecting light energy from all surfaces
- Shooting - update all surfaces by distributing light energy from one surface
- Sorting and Shooting - choose the surface with the greatest un-shot light energy and use shooting to distribute it to other surfaces
- start by shooting light energy out of the lights onto objects (the brightest light goes first)
- then the object that would reflect the most light goes next, etc.
- Sorting and Shooting with Ambient - start with an initial guess for ambient lighting and do sorting and shooting afterwards

Iterative Radiosity

