Photon Mapping

Heﬁrik Wann Jensen

REEINEREREEE
Sunthesis
Using Photon

Foreword by Pat Pllanrahan




Photon Map (a type of light map

* Photon maps store lighting information on points (“photons”) in 3D space
e Stored on or near 2D surfaces

* In the last lecture, we (instead) stored information on surfaces patches/triangles




Photon Maps

* Emit photons from light sources and bounce them around the scene, storing light
information in the photon map (left image)
e Later (right image), use the photon map to estimate global illumination

Specular

Specular

Emission

Any B

Nonspecular

Specular/Nonspecular



Tractability

* In the last lecture, we discretized surfaces and hemisphere directions

* This discretization into “elements” is a Newton-Cotes style approximation to the integral
» 2D space + 2D angles = 4D (or 5D for participating media)

 Since Newton-Cotes approaches suffer from the curse of dimensionality, a purely diffuse
lighting assumption was used to reduce the dimensionality (for tractability)

* Integrating over angles (a radiosity approach) reduced the problem to 2D (or 3D for
participating media)

* But (direction/angle dependent) specular lighting could no longer be addressed

* Monte Carlo integration (although less accurate than Newton-Cotes) scales well to higher
dimensional problems (i.e., no curse of dimensionality)

* Monte Carlo integration can be used on the full 4D (or 5D) lighting equation

* The purely diffuse lighting assumption is no longer required (can treat specular lighting!)




A Simple Example

e Consider approximating m = 3.1415926535 ...
e Use a compass to construct a circle with radius =1

e Since A = mr?, the area of this unit circle is

* Integrate f(x,y) = 1 over the unit circle to obtain [f, f(x,y)dA =m

Area =1



Newton-Cotes Approach

* Inscribe triangles inside the circle
e Sum of the area of all the triangles (no need to trivially multiply by the height = 1)

* The difference between the area A and its approximation with triangles leads to errors

I T =~ 2.8284



Monte Carlo Approach

e Construct a square with side length 4 containing the circle

 Randomly generate N points in the square (color points inside the circle blue)

: Aci T : N
e Since —&rete — —, Can approximate 7 = 16 (N bfruz\f; )
blue red

Apox




Review: Random Numbers

 Random variables — expressions whose value is the outcome of a random experiment

* Sample space — set of all possible outcomes

* Probability distribution - probability p(x) of selecting an outcome x in the sample space

* Sampling — selection of a subset of a sample space (valid when it reflects p(x))

* Pseudo-Random Number Generator (PRNG) - deterministic algorithm that generates a
sequence of quasi-“random” numbers based on an initial seed (a starting point in the pre-
determined sequence)

* PRNGs typically generate real numbers between 0 and 1 aiming for equal (uniform)
probability

* The ability to uniformly sample from [0,1] enables sampling from other sample spaces that
have non-uniform probabilities

see CS109



Monte Carlo Methods

* Typically used in higher dimensions (5D or more)

 Random (pseudo-random) numbers generate sample points that are multiplied
by “element size” (e.g. length, area, volume, etc.)

1

* Error decreases like v where N is the number of samples (only %2 order accurate)

e E.g. 100 times more sample points are needed to gain one more digit of accuracy

* \Very slow convergence, but independent of the number of dimensions!

* Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only
tractable approach for high dimensional problems




Monte Carlo Integration (in 1D)
* Consider: fff(x)dx

* Generate N random samples X; in the interval [a, b]

* A Monte Carlo estimate for the integral is:

it zj’:l (bN;a)f(Xi) = (b — a) §V=11\];(Xi)

* This is a simple averaging of all the sample results



Importance Sampling

(A Trivial) Motivating Case:
e Suppose f(x) is only nonzero in [ay, b;] < [a, b], i.e. f;f(x)dx = ffllf(x)dx

* Then, X; ¢ [aq, b;] do not contribute to the integral
* So, more efficient to change p(x) to a uniform distribution over |a4, b1] (instead of over [a, b])

General Case:

* The probability distribution p(x) should prefer samples from areas with higher contributions
to (or higher importance to) the integral

* Given any p(x) (with f p(x)dx = 1), the Monte Carlo estimate is:

=R e 0

* When p(x) = b—ia (i.e., uniform sampling), this reduces to: Fy = (b — a)

>N, (X))
N




Importance Sampling

* Monte Carlo estimates for folxzdx with N = 100 samples:

1 0.33671 1.01%
2x 0.33368 0.105%
3x* 0.33333 0.000%

* Typically, the error is lower when p(x) better “resembles” f(x)

* So, choose p(x) based on physical/known principles or an approximate solution

e Caution: importance sampling does not necessarily reduce error (and can make errors worse)



Photon Emission

* Choose some number of photons; divide them amongst the lights (based on relative power)

* For efficiency/implementation, every photon has the same strength
* So, brighter lights emit more (not stronger) photons

* Emission Position:
* Point light - all photons are emitted from a single point

* Area light - randomly select a point on the surface to emit each photon from

e Semi-random: Divide a rectangular light into a uniform 2D grid; emit a set number of photons from each grid cell
(randomly choosing the position within a cell)

* Emission Direction:
 Randomly choose a direction on a sphere, a hemisphere, a subset of the sphere (for spotlights), etc.

* In some cases (e.g. consider the sun), a large number of photons would miss the scene entirely
* Ignore those photons (never emit them)
* Restrict the light to an appropriate sub-light
* Scale down the light’s energy to match that of the sub-light (when dividing up photons)



Light Map
* Using a ray tracer to trace the photon’s path (until it intersects scene geometry)

e Each time a photon intersects geometry, add its data to the light map (as
incoming light)

* Make a copy of the photon’s data to store in the light map

* Don’t delete the photon, or move it into the light map
* The photon might still bounce around a bit more (if it doesn’t get absorbed)

e Store (in the light map):
* The point of impact (a location in 3D space)
* The incoming direction (the ray direction from the ray tracer)
* Don’t need to store the energy (since all photons have the same energy)



Possible Absorption

» After storing the photon’s data in the light map, determine what happens next

e Objects absorb some incoming light (which is why they have a color)

* There is a chance that the photon is absorbed:
* Absorbing a fraction of the photon’s energy would lead to unequal energy photons

* |nstead, use the fraction of light energy that would be absorbed to calculate a probability
that the (entire) photon is absorbed

e Generate a random number (between 0 and 1), and compare it to the probability
of absorption (Russian Roulette)

* If absorbed, the process stops (for this photon)
e Otherwise, the photon bounces



Bouncing

 Compute a bounce direction by mapping BRDF directions into probabilities
* E.g. a purely diffuse BRDF has equal probabilities for every hemisphere direction

 Generate a random number, and use it to determine the bounce direction
* Then, use the ray tracer to (again) trace the photon’s path
* At the next intersection, (again) store the photon’s data in the light map

* Then (once again), check for absorption; if not absorbed, bounce again, etc.

e Use a pre-determined maximum number of bounces (before termination)

e Can (usually) be set rather high, as photons (typically) have a diminishing overall chance of
avoiding absorption (as the number of bounces increases)



Photon Map

289 LLK S L > Mot S AW,

Phys:cal/y Based Rendermg by Pharr and Humphreys

i



Rendered Image

- o v’ 8

Physically Based Rendering by Pharr and Humphreys



Direct Lighting

* It’'s more accurate to evaluate direct lighting using shadow rays, rather than
interpolating lighting from a light map

* Thus, the first time a photon emitted from a light source hits an object, it is not
stored in the light map (this is instead accounted for with direct lighting)

* This also makes the light map a lot more efficient, since direct illumination
information is not being stored



Separating Diffuse/Specular

* [t’s more convenient/efficient to treat diffuse and specular lighting separately

 When bouncing a photon, first determine (randomly) if the photon undergoes:
* absorption (deleted)
* or a diffuse bounce
e or a specular bounce
e Determine the bounce direction (randomly, as usual) by using the appropriate
BRDF (diffuse or specular)
* Use two light maps:

e Caustic Map: stores photons that have had specular bounces only (prior to
being stored in the map)

* Indirect Lighting Map: store photons that have had at least one diffuse bounce




Diffuse/Specular Photon Maps

Specular

Specular

Emission

Nonspecular

Specular/Nonspecular



Caustics




Aside: Code Acceleration

* Photons are typically stored in an octree or K-D tree acceleration structure (so that the
information they contain is more efficiently retrieved)

i
: | 4

/ OO LOO0O

\
A

10000006000 000000060




Gathering Radiance

* Trace rays from the camera and intersect with objects (as usual)
e Use shadow rays for direct lighting (as usual)

* Estimate the radiance contribution to the ray from caustics and indirect lighting
using the respective light maps:

» Use the N closest photons to the point of intersection (with the aid of an acceleration
structure)




Color

e Create 3 photon maps, one for each color channel: Red, Green, Blue

* Objects of a certain color better absorb photons of differing colors (creating
differences in the photon maps)

* This gives color bleeding and related effects




