Sampling
Area-Coverage

• **Real-world sensors** get a signal based on the area fractions of the sensor “covered” by objects

Coverage:

Signal:

• A ray tracer **only** gets **samples** of the geometry (using ray-geometry intersection points)

• A scanline renderer projects **the entire triangle** onto the image plane
 • Testing pixel centers against triangles **only** collects **sample** information on geometry
 • Computing area overlap between triangles and (square) pixels would better mimic real-world sensors
Missing Information

- Eyes/cameras don’t collect all of the information either
- The staggered spatial layout of real-world sensors means that large regions lack information for certain wavelengths (layered approaches can help to circumvent this)
Aliasing

- Testing **only** the pixel center (with ray-tracing or rasterization) leads to jagged edges
- This causes **aliasing** artifacts (an alias/imposter replaces the correct feature)
- A jagged line appears instead of the correct straight line
- **Anti-aliasing** strategies reduce aliasing artifacts caused by sampling information
Aliasing: Shaders & Textures

- Aliased normal vectors can cause erroneous sparkling highlights (top left)
- Aliasing can occur when texture mapping objects too (top right)
Temporal Aliasing

• A spinning wheel can appear to spin backwards, when the motion is insufficiently sampled in time ("wagon wheel" effect)
Sampling Rate

• Artifacts can be reduced by increasing the number of samples (per unit area)
• Thus, one might increase the number of pixels in the image; but:
 • It takes longer to render the scene (because the number of rays increases)
 • Displaying higher-resolution images requires additional storage/computation

• Optimize the Sample Rate!
• Use the **lowest possible** sampling rate that does not result in noticeable artifacts
• What is the optimal sampling rate?
4 samples per period

\[f(x) = \cos(2\pi x) \]
samples

\[f(x) = \cos(2\pi x) \]
reconstruction

\[f(x) = \cos(2\pi x) \]
2 samples per period

\[f(x) = \cos(2\pi x) \]
samples

\[f(x) = \cos(2\pi x) \]
reconstruction

\[f(x) = \cos(2\pi x) \]
1 sample per period

\[f(x) = \cos(2\pi x) \]
samples

\[f(x) = \cos(2\pi x) \]
reconstruction

\[f(x) = \cos(2\pi x) \]

- Appears to be a different function
2/3 sample per period
samples

\[f(x) = \cos(6\pi x + \frac{\pi}{3}) \]
The function in the image is:

\[f(x) = \cos(6\pi x + \frac{\pi}{3}) \]

- **Appears to be a different function**
These two cosine waves appear identical to the sample points.
Sampling Rate

- Sampling at too low a rate results in aliasing
- Two different signals become indistinguishable (or aliased)

Nyquist-Shannon Sampling Theorem
- If $f(t)$ contains no frequencies higher than W hertz, it can be completely determined by samples spaced $1/(2W)$ seconds apart
- That is, a minimum of 2 samples per period are required to prevent aliasing
Anti-Aliasing

• The Nyquist frequency is defined as half the sampling frequency

• If the function being sampled has no frequencies above the Nyquist frequency, then no aliasing occurs

• Real world frequencies above the Nyquist frequency appear as aliases to the sampler

• Before sampling, remove frequencies higher than the Nyquist frequency
Fourier Transform

- Transform between the spatial domain $f(x)$ and the frequency domain $F(k)$

Frequency Domain:
$$ F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} \, dx $$

Spatial Domain:
$$ f(x) = \int_{-\infty}^{\infty} F(k) e^{2\pi i k x} \, dk $$

\[e^{i\theta} = \cos \theta + i \sin \theta \]

\[\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \]
Constant Function
Low Frequency Cosine

\[f(x) = \cos(\pi x) \]
High Frequency Cosine

\[f(x) = \cos(2\pi x) \]
Narrow Gaussian

\[f(x) = \frac{2}{\sqrt{\pi}} e^{-4x^2} \]
Wider Gaussian

\[f(x) = \frac{1}{2\sqrt{\pi}} e^{-25x^2} \]

Wider

Narrower
sum of two different cosine functions

\[f(x) = \cos(3\pi x) + 0.5\cos(1\pi x) \]
samples
reconstruction

Aliasing!
Fourier transform

\[F(k) \]

\[f(x) = \cos(3\pi x) + 0.5\cos(1\pi x) \]

Samples:
identify Nyquist frequency bounds
remove high frequencies
inverse Fourier transform

\[g(x) = 0.5 \cos(brx) \]
samples
reconstruction

No Aliasing!
Anti-Aliasing

• Sampling causes higher frequencies to masquerade as lower frequencies
• After sampling, cannot untangle the mixed high/low frequencies

• Remove the high frequencies before sampling (in order to avoid aliasing)

• Part of the signal is lost
• But, that part of the signal was not representable by the sampling rate anyways
Blurring vs. Anti-Aliasing

blurring jaggies after sampling

removing high frequencies before sampling
Images

• Images have **discrete** values (and are not continuous functions)
 • Use a **discrete** version of the Fourier transform
 • The Fast Fourier Transform (FFT) computes the **discrete** Fourier transform (and its inverse) in $O(n \log n)$ complexity (where n is the number of samples)

• Images are **2D** (not 1D)
 • A **2D** discrete Fourier transform can computed using 1D transforms along each dimension

1. Fourier transform (into the frequency domain)
 • Discrete image values are transformed into another array of discrete values
2. Remove high frequencies
3. Inverse Fourier transform (back out of the frequency domain)
Constant Function
\(\sin\left(\frac{2\pi}{32}\right) x \)
$\sin\left(\frac{2\pi}{16}\right) x$
\[\sin\left(\frac{2\pi}{16}\right) y \]
\(\sin\left(\frac{2\pi}{32}\right) x \times \sin\left(\frac{2\pi}{16}\right) y \)
An obvious star!
lowest frequencies
intermediate frequencies
(larger) intermediate frequencies
highest frequencies (edges)
Convolution

- Let f and g be functions in the spatial domain (e.g. images), and $F(f)$ and $F(g)$ be transformations of f and g into the frequency domain
 - In our prior examples: f was the image (to the left), $F(f)$ was the frequency domain version of the image (to the right)

- Removing higher frequencies of $F(f)$ is equivalent to multiplying by a Heaviside function $F(g)$ ($=1$ for smaller frequencies, $=0$ for larger frequencies)
- Then, the inverse transform $F^{-1}(F(f)F(g))$ gives the final result

- This entire process is called the convolution of f and g:

$$f * g = F^{-1}(F(f)F(g))$$
Convolution Integral

- Convolution can be achieved without the Fourier Transform:
 \[
 (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau
 \]

- A narrower \(g \) makes the integral more efficient to compute
- A narrower \(F(g) \) better removes high frequencies
- But, they can’t both be narrow
 - Recall: the narrower Gaussian had wider frequencies, and the wider Gaussian had narrower frequencies
Box Filter

- Let \(g \) have nonzero values in an \(N \times N \) block of pixels (surrounding the origin), and be zero elsewhere
- The discrete convolution (integral) is computed by:
 - overlay the filter \(g \) on the image, multiply the corresponding entries, and sum the results
- The final result is (typically) defined at the center of the filter
Filters Most *(but not all)* High Frequencies
Wider Box Filter

\[g \quad \rightarrow \quad F(g) \]

more expensive convolution integral
removes more of the high frequencies
Super-Sampling

• Collect extra information/samples (in each pixel), and average the result (e.g. with a box filter)
 • E.g. render a 100 by 100 image with 4 by 4 super-sampling (equivalent to rendering a 400 by 400 image)
 • This properly represents (without aliasing) frequencies up to 4 times higher (than the original image)
 • Apply a 4 by 4 box filter to remove as much of those extra frequencies as possible

• As the number samples per pixel increases, this converges to the area coverage integral
 • Computational Cost: only super-sample pixels that have high frequencies (e.g., edges)
 • N.B. use pseudo-random Monte-Carlo super-sampling strategies (instead of uniform n by n super-sampling)
Super-Sampling

Point Sampling

4 by 4 Super-Sampling

Exact Area Coverage
Super-Sampling

Jaggies

Anti-Aliased