
Geometric Modeling

Examples

Mesh Editing
• Manipulate a few control/mesh points, while an algorithm procedurally deforms the mesh

• e.g., twist, bend, stretch, etc.

Basis Functions
• Knots: node locations 𝑢!, 𝑢", … 𝑢# in parameter space
• Lowest level building blocks are piecewise constant (m of them):

 𝑁$,! 𝑢 = &	1	 𝑖𝑓	𝑢$ ≤ 𝑢 < 𝑢$&"	
0	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

• Higher order building blocks are defined recursively: the i-th basis function of order j is

𝑁$,' 𝑢 =
𝑢 − 𝑢$
𝑢$&' − 𝑢$

𝑁$,'(" 𝑢 +
𝑢$&'&" − 𝑢
𝑢$&'&" − 𝑢$&"

𝑁$&",'(" 𝑢

𝑵𝟎,𝟎 𝑵𝟏,𝟎 𝑵𝟐,𝟎0-th order:

𝑵𝟎,𝟏 𝑵𝟏,𝟏 𝑵𝟎,𝟐1st order: 2nd order:

B-Splines
• A B-spline of order 𝑝 has basis functions: 𝑁$,* 𝑢

• Let 𝑷!, 𝑷", … , 𝑷+ be control points (in 2D or 3D)

• The B-spline curve is: 𝐶 𝑢 = ∑$,!+ 𝑁$,* 𝑢 𝑷$

• Given m intervals, a B-spline of order p
requires m-p control points 𝑷$
• E.g., m=6 intervals with order p=3
requires m-p=3 (orange box) control
points

Cubic B-Spline
• Ignore boundaries (where there are only 1, 2, 3 cubic basis functions 𝑵$,-):

• 3 parametric intervals are lost off of each side
• [u3,u4) is the first interval to have a full representation (in the orange box of prior slide): 𝑵!,#, 𝑵$,#, 𝑵%,#, 𝑵#,#

• 4 control points define the shape of each curve segment
• e.g., 𝑠! = (.3,.4) is controlled 𝑷!, 𝑷$, 𝑷%, 𝑷#

𝑠% 𝑠& 𝑠' 𝑠(
0.0 0.50.40.30.20.1 0.6 0.7 0.8 0.9 1.0parametric domain:

control point

knots

𝑢 =

m=10 intervals
order p=3
10-3=7 control points

NURBS Curve
• Non-Uniform Rational B-Spline (NURBS): 𝐶 𝑢 =

∑!"#
$ 0!,& 1 2!𝑷!
∑!"#
$ 0!,& 1 2!

• Increasing the weight 𝑤$ pulls the curve closer to 𝑷$
• Decreasing 𝑤$ releases the curve to move farther away from 𝑷$

NURBS Surface
• Extending the ideas from curves to surfaces:

𝑆 𝑢, 𝑣 =
∑$,!# ∑',!+ 𝑁$,* 𝑢 𝑁',4 𝑣 𝑤$,'𝑷$,'
∑$,!# ∑',!+ 𝑁$,* 𝑢 𝑁',4 𝑣 𝑤$,'

Adding Finer Details
• First, insert new knots (and control points) without changing the shape of the curve

• Then, move around control points to modify the shape of the curve

Original Curve

Insert a Knot

Add/Adjust Control Points

Subdivision
• Automatically generate a finer (and smoother) mesh from coarser geometry
• Can be done repeatedly

Subdivision Curves

Subdivision Surfaces
• Subdivide each triangle into 4 sub-
triangles

• Move the old and new vertices

• Repeat (if desired)

Charles Loop

2406 citations (for an MS thesis!)

Move Old/New Vertices
• Set the position of a new vertex (shown in black) using a weighted average of the four nearby
original vertices (shown in grey)
• Change the position of each regular original vertex (shown in grey) using a weighted average
that includes the six adjacent original vertices (also shown in grey)

Extraordinary Vertices
• Most vertices are regular (degree 6)
• If a mesh is topologically equivalent to a sphere, not all vertices are regular
• At extraordinary vertices, use special weights:
• If number of neighbors is 𝑛 = 3, 𝛽 = -

"5

• else 𝛽 = -
6+

extraordinary
vertex

Initial Mesh

Add New Vertices

New Vertex and Stencil

Move New Vertex

Original (Regular) Vertex and Stencil

Move Original (Regular) Vertex

Original (Extraordinary) Vertex and Stencil

Move Original (Extraordinary) Vertex

Subdivided Surface

Subdivide Again

And Again

And Again

Final (Smooth) Limit Surface

Laplacian Mesh Editing

• Instead of editing via control points (as was done for NURBS), Laplacian mesh
editing allows one to (more directly) move vertices
• Select a subset of the mesh to move (and target positions)
• Select a region of influence containing the subset (so that the deformation is smooth)

Differential Coordinates
• The differential coordinate is the difference between a vertex’s position 𝑥$ and the average
position of its neighbors:

𝑑$ = 𝐿 𝑥$ = 𝑥$ −
1
𝑛$
D

'∈0!
𝑥'

• Let 𝑋 be the vector of mesh vertices (one entry for each vertex)
• Let 𝐷 be the vector of differential coordinates (one entry for each vertex)
• Since each 𝑑$ is linear in 𝑥$ and all 𝑥', can write 𝐷 = 𝑀𝑋 where 𝑀 is a constant coefficient
(sparse) matrix

• Differential coordinates approximate the local shape:
• The direction of 𝑑$ approximates the direction of the normal vector
• The magnitude of 𝑑$ approximates the mean curvature

Laplacian Mesh Editing
• Select mesh points 𝑥8 and target positions 𝑝8
• Select a region of influence Ω containing (at least) all the 𝑥8

• Solve (the sparse linear system) 𝑀 I𝑋 = 𝐷 for all J𝑥$ ∈ Ω, with soft constraints J𝑥8 = 𝑝8
• 𝑀 I𝑋 = 𝐷 aims to preserve the shape, while J𝑥8 = 𝑝8 targets the deformation

• Minimize 𝐸 I𝑋 = ∑$∈9 𝐿 J𝑥$ − 𝑑$:

: + ∑8 J𝑥8 − 𝑝8 :
:

• Improved results can be obtained by approximating part of the deformation via a transform
𝑇$ I𝑋 , computed for each vertex via: min

;!
𝑇$𝑥$ − J𝑥$:

: + ∑'∈0! 𝑇$𝑥' − J𝑥' :
:	

• Then 𝐸 I𝑋 = ∑$∈9 𝐿 J𝑥$ − 𝑇$ I𝑋 𝑑$:
: + ∑8 J𝑥8 − 𝑝8 :

:

Blender, Clip Studio Paint, TurboSquid
● Pear is downloaded from TurboSquid, all other geometry created from scratch
● Cat character is created through modeling from geometric primitives and sculpting
● Cup is broken through cell fracture and rigid body collisions
● Liquid simulations to model fluid inside cup
● Leaves/trees created through particle system
● Textures are created/modified through Clip Studio Paint or taken from online

Gray Wong, CS148 2021

● Set train at different positions on separate keyframes to create motion blur.
● Used loop cuts to make fine-grained adjustments to the geometry of the mesh.
● Applied noise textures, bump map, and color ramp to create plastic material.
● Marked edges as sharp and used Auto Smooth to ensure that intentional creases are not

smoothed out by Shade Smooth or Subdivision Surface Modifier.
● Downloaded the "UV Squares" add-on that helps streamline UV unwrapping by converting

a UV map to a square grid.
Edwin Pua, CS148
2021

Crystal Explorer by Kent Vainio (2020)
• Cloth and rigid body simulations for the cape and treasure chest items

• Blender’s hair particle system to create the fluffy fur, cape fur and antenna

• Multiple procedural textures (mostly Voronoi and Musgrave) along with various
shaders (glass, emission, etc.) to create a vibrant scene

• Moogle (the fluffy creature - a character from the Final Fantasy video game series) was
modeled and sculpted from scratch using reference images

METHODS:

Used loop cut, subdivision, solidify, bezel tool, bisect tool and displacement to create the whiskey, moon rock award, photo frames, etc
Used cloth simulation to model the newspaper. Took pictures of the book covers and created UV textures with a photo editing tool for books.
Combined LightPath node, Transparent, Glossy and Emission BSDF to create a reflective window and its imperfect surface
Downloaded the rocket ship, lunar lander and NASA medal in SolidWorks assembly format and converted with AutoDesk Inventor

Yanjia Li, Lingjie Kong, CS148 2020

Open Shading Language (OSL) Node; Displacement map; Dynamic Sky; Particle System; Motion Blur
• Geometrical low-poly modeling from scratch for all the geometries except for the grass (downloaded from TurboSquid)
• OSL node for procedural stone road texture (idea from Erindale YouTube Channel)
• Random displacement mapping to generate water wrinkles (from a subdivided plane) and tree crown (from an icosphere)
• Particle system with wind force for drifting cherry blossom petals; motion blur applied while rendering
• Blender official add-on “Dynamic Sky” for the basic light source and background; additional lighting for the reflection on the water wrinkles

Yifan Wang, CS148 2020

https://youtu.be/XW-DrBQ-u1o

Example Slides
• Extra Credit: 5 HW points (i.e. worth one full HW assignment) for contributing:
• a slide with a nice image
• a few bullet points below the image on how the geometry was modeled
• names of both partners (if applicable)

• The CAs will assign anywhere from 0-5 HW points for a submission (guaranteed 5 points if we
use it for future classes)
• Recall: there is no overflow past the 50 percentile HW cap

• Deadline: end of the quarter

