More Geometric Modeling

Implicit Surfaces

- Define a function $\phi(x)$ over $\forall x \in \mathbb{R}^3$
- Interior Ω^- is defined by $\phi(x) < 0$, and exterior Ω^+ defined by $\phi(x) > 0$
- The surface $\partial \Omega$ is defined by $\phi(x) = 0$
 - We have already seen planes/spheres (and lines/rays/circles in 2D) defined by implicit surfaces
 - Easy to ray trace implicitly defined geometry
- Easy to check whether a point x is inside/outside: just evaluate $\phi(x)$
- Constructive Solid Geometry (CSG) operations: union, difference, intersection, etc.

Topological Change

• Greatly superior to triangle meshes for topological change!

Blobbies

- Each blob is defined as a density function around a particle
- Blob kernels can be: 2D ellipses, 2D diamonds, 3D spheres, etc.
- For each pixel, the aggregate density is summed from all overlapping blobs
- Also known as:
 - Metaballs (in Japan), Soft objects (in Canada and New Zealand)
 - Slightly different density kernel functions

Topological Change

Blobby Modeling

Marching Cubes (or Marching Tetrahedra)

- Turns an implicit surface into triangles
 - Define the implicit surface on a 3D grid
 - For each grid cell, use the topology of the volume to construct surface triangles

Netwon's Second Law (for Physics Simulations)

- Kinematics describe position X(t) and velocity V(t) as function of time t
 - $\frac{dX(t)}{dt} = V(t) \text{ or } X'(t) = V(t)$
- Dynamics describe responses to external stimuli
 - Newton's second law F(t) = MA(t) is a dynamics equation
 - V'(t) = A(t) implies $V'(t) = \frac{F(t)}{M}$ as well as $\frac{d^2X(t)}{dt^2} = X''(t) = \frac{F(t)}{M}$
- Combining kinematics and dynamics gives: $\binom{X'(t)}{V'(t)} = \binom{V(t)}{\frac{F(t,X(t),V(t))}{M}}$
 - Note: forces often depend on position/velocity
- Much of the physical world can be simulated with computational mechanics (FEM) and computational fluid dynamics (CFD), using Newton's second law
 - Create degrees of freedom, specify forces, and solve the resulting ordinary differential equations (ODEs)
 - Spatially interdependent forces lead to partial differential equations (PDEs)

Computational Mechanics (FEM)

Computational Fluid Dynamics (CFD)

Computational Biomechanics

Computer Vision

Range Scanners

- Senses 3D positions on an object's surface, and returns a range image:
 - $m \times n$ grid of distances (m points per laser sheet, n laser sheets)
- Multiple range images are aligned with transformations
 - Transformations determined via Iterative Closest Point (ICP) and related/similar methods
- Aligned range images are combined using a zippering algorithm

Range Scanners

- Each sample point in the $m \times n$ range image is a potential vertex in a triangle mesh
- Special care is required to avoid joining together vertices separated by depth discontinuities

Scanning w/Mobile Devices

AUTODESK° 1230°

Autodesk 123D Catch

Voxel Carving

- Requires multiple images (from calibrated cameras) taken from different directions
- Construct a voxelized 3D model:
 - For each image, delete (carve away) voxels outside the object silhouette
- Colors can be projected onto the geometry

every image

Voxel Carving

Original image

Extracted silhouettes

Carved out voxels

Back-projecting colors

Reconstruction from Large Photo Collections

- Collect a large number of photos (e.g. from google images)
- Predict relative camera position/orientation for each image
- The position of a point that is visible in multiple images can be triangulated
- Obtain a sparse point cloud representation of the object
- Dense reconstruction algorithms can be used to improve the results

2D photos

3D geometry

Noise & De-Noising

- Computer Vision algorithms use real-world sensors/data
- This results in noise corruption, which is the biggest drawback to such methods
- Denoising/smoothing algorithms are very important (for alleviating these issues)

Laplacian Smoothing

- Compute a Laplacian estimate using the one ring of vertices about a point
 - Similar to differential coordinates
- E.g., on a curve: $L(p_i) = \frac{1}{2} ((p_{i+1} p_i) + (p_{i-1} p_i))$
- Then, update $p_i^{new} = p_i + \lambda L(p_i)$ where $\lambda \in (0,1)$
- Repeat several iterations

Taubin Smoothing

- Laplacian smoothing suffers from volume loss
- Taubin smoothing periodically performs an inflation step to add back volume:

$$p_i^{new} = p_i - \mu L(p_i)$$
 with $\mu > 0$

Laplacian smoothing (only)

Taubin smoothing

Procedural Methods (for Geometry Construction)

- Generate geometry with an <u>algorithm</u>
 - Typically used for complex or tedious-to-create models
 - Perturb the algorithm to make variations of the geometry
- Start with a small set of data
- Use rules to describe high level properties of the desired geometry
- Add randomness, and use recursion

Neural Networks? Generative AI?

L-Systems

• Developed by a biologist (Lindenmayer) to study algae growth

Natural Language Processing (NLP)?

- A recursive formal grammar:
 - An alphabet of symbols (terminal and non-terminal)
 - Production rules: non-terminal symbols recursively create new symbols (or sequences of symbols)
- Start with an initial string (axiom), and apply production rules
- A translator turns symbols into geometric structures

Nonterminals: A and B both mean "draw forward"

Terminals: +/- mean "turn" right/left (respectively) by 60 degrees

Production Rules: $A \rightarrow B + A + B$ and $B \rightarrow A - B - A$

·B A-B-A + B+A+B + A-B-A

B+A+B-(A-B-A)-(B+A+B) +A-B-A +B+A+B +A-B-A +B+A+B-(A-B-A)-(B+A+B)

Etc.

Sierpinski Triangle

L-System + Stack = Branches

- Nonterminals: X is no action, F is draw forward
- Terminals: +/- means turn right/left by 25 degrees
 - [means to store current state on the stack
 -] means to load the state from the stack
- Initial Axiom: X
- Production Rules: $X \rightarrow F [[X]+X] + F [+FX] X, F \rightarrow FF$

L-Systems

- Easily extended to 3D
- Model trunk/branches as cylinders
- As recursion proceeds:
 - shrink cylinder size
 - vary color (from brown to green)
- Add more variety with a stochastic L-system
 - Multiple (randomly-chosen) rules for each symbol
- Practice and experimentation is required in order to obtain good results
 - (just like for ML)

Fractals

- Initiator: start with a shape
- Generator: replace subparts with a (scaled) generator
- Repeat

Fractals

- Add randomness to the new vertex locations
- E.g., can create an irregular 2D silhouette (for far away mountains)

Height Fields

- Start with a 2D fractal (or any 2D grey-scale image)
- Place the image on top of a ground plane (subdivided into triangles)
- For each triangle vertex, displace its height based on the local pixel intensity

3D Landscapes

- Initiator: start with a shape
- Generator: replace random subparts with a self-similar (somewhat random) pattern

• Similar to subdivision, but with much more interesting rules for setting vertex positions

3D Landscapes

Fractal Worlds

Machine Learning

- Interactive Example-Based Terrain Authoring with Generative Adversarial Networks
 - Siggraph 2017

Generative Al

Rapidly Generate 3D Assets for Virtual Worlds with Generative AI

Jan 03, 2023

1 +21 Like

Discuss (0)

By Gavriel State

