
More Geometric Modeling



Implicit Surfaces
• Define a function 𝜙(𝑥) over ∀𝑥 ∈ 𝑅!
• Interior Ω" is defined by 𝜙 𝑥 < 0, and exterior Ω# defined by 𝜙 𝑥 > 0
• The surface 𝜕Ω is defined by 𝜙 𝑥 = 0

•We have already seen planes/spheres (and lines/rays/circles in 2D) defined by implicit surfaces
• Easy to ray trace implicitly defined geometry

• Easy to check whether a point 𝑥 is inside/outside: just evaluate 𝜙 𝑥
• Constructive Solid Geometry (CSG) operations: union, difference, intersection, etc.



Topological Change
• Greatly superior to triangle meshes for topological change!



Blobbies
• Each blob is defined as a density function around a particle
• Blob kernels can be: 2D ellipses, 2D diamonds, 3D spheres, etc.
• For each pixel, the aggregate density is summed from all overlapping blobs 
• Also known as: 

•Metaballs (in Japan), Soft objects (in Canada and New Zealand)
• Slightly different density kernel functions



Topological Change



Blobby Modeling



Marching Cubes (or Marching Tetrahedra)
• Turns an implicit surface into triangles

• Define the implicit surface on a 3D grid
• For each grid cell, use the topology of the volume to construct surface triangles



Netwon’s Second Law (for Physics Simulations)
• Kinematics describe position 𝑋 𝑡 and velocity 𝑉(𝑡) as function of time 𝑡
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• Note: forces often depend on position/velocity

• Much of the physical world can be simulated with computational mechanics (FEM) and 
computational fluid dynamics (CFD), using Newton’s second law
• Create degrees of freedom, specify forces, and solve the resulting ordinary differential equations (ODEs)
• Spatially interdependent forces lead to partial differential equations (PDEs)



Computational Mechanics (FEM)



Computational Fluid Dynamics (CFD)



Computational Biomechanics



Computer Vision



Range Scanners
• Senses 3D positions on an object’s surface, and returns a range image:

• 𝑚×𝑛 grid of distances (𝑚 points per laser sheet, 𝑛 laser sheets)
• Multiple range images are aligned with transformations

• Transformations determined via Iterative Closest Point (ICP) and related/similar methods
• Aligned range images are combined using a zippering algorithm



Range Scanners
• Each sample point in the 𝑚×𝑛 range image is a potential vertex in a triangle mesh
• Special care is required to avoid joining together vertices separated by depth discontinuities



Scanning w/Mobile Devices

Structure Sensor for iPad Autodesk 123D Catch



Voxel Carving
• Requires multiple images (from calibrated cameras) taken from different directions
• Construct a voxelized 3D model:

• For each image, delete (carve away) voxels outside the object silhouette
• Colors can be projected onto the geometry

Discretized 
scene volume, 
to be assigned 
RGBA values

Input images 
(calibrated)

Color the voxel gray if silhouette is in 
every image



Voxel Carving
Original image Extracted silhouettes

Carved out voxels
Back-projecting colors



Reconstruction from Large Photo Collections
• Collect a large number of photos (e.g. from google images)
• Predict relative camera position/orientation for each image
• The position of a point that is visible in multiple images can be triangulated
• Obtain a sparse point cloud representation of the object
• Dense reconstruction algorithms can be used to improve the results

2D photos 3D geometry



Drones & Trees



Drones & Trees



Drones & Trees



Drones & Trees



Noise & De-Noising
• Computer Vision algorithms use real-world sensors/data
• This results in noise corruption, which is the biggest drawback to such methods
• Denoising/smoothing algorithms are very important (for alleviating these issues)



Laplacian Smoothing
• Compute a Laplacian estimate using the one ring of vertices about a point

• Similar to differential coordinates

• E.g., on a curve: 𝐿 𝑝, = -
. 𝑝,#- − 𝑝, + 𝑝,"- − 𝑝,

• Then, update 𝑝,/01 = 𝑝, + 𝜆𝐿(𝑝,) where 𝜆 ∈ (0,1)
• Repeat several iterations



Taubin Smoothing
• Laplacian smoothing suffers from volume loss 
• Taubin smoothing periodically performs an inflation step to add back volume:

𝑝,/01 = 𝑝, − 𝜇𝐿(𝑝,) with   𝜇 > 0

Laplacian smoothing (only)

Taubin smoothing



Procedural Methods (for Geometry Construction)
• Generate geometry with an algorithm

• Typically used for complex or tedious-to-create models
• Perturb the algorithm to make variations of the geometry

• Start with a small set of data
• Use rules to describe high level properties of the desired geometry
• Add randomness, and use recursion

Neural Networks?
Generative AI?



L-Systems
• Developed by a biologist (Lindenmayer) to study algae growth
• A recursive formal grammar:

• An alphabet of symbols (terminal and non-terminal) 
• Production rules: non-terminal symbols recursively create new symbols (or sequences of symbols)

• Start with an initial string (axiom), and apply production rules
• A translator turns symbols into geometric structures

Nonterminals: A and B both mean “draw forward”
Terminals:  +/-  mean "turn” right/left (respectively) by 60 degrees
Production Rules: A → B + A + B and B → A − B − A

Intial Axiom: A B+A+B A-B-A + B+A+B + A-B-A B+A+B-(A-B-A)-(B+A+B) 
+A-B-A +B+A+B +A-B-A

+B+A+B-(A-B-A)-(B+A+B)

Etc. Sierpinski 
Triangle

Natural Language 
Processing (NLP)?



L-System + Stack = Branches
• Nonterminals: X is no action, F is draw forward
• Terminals:  +/- means turn right/left by 25 degrees
• [ means to store current state on the stack
• ] means to load the state from the stack

• Initial Axiom: X
• Production Rules: X → F − [[X]+X] + F [+FX] − X, F → FF



L-Systems

• Easily extended to 3D
• Model trunk/branches as cylinders
• As recursion proceeds:
• shrink cylinder size
• vary color (from brown to green)

• Add more variety with a stochastic L-system
• Multiple (randomly-chosen) rules for each symbol

• Practice and experimentation is required in 
order to obtain good results
• (just like for ML) 



Fractals
• Initiator: start with a shape
• Generator: replace subparts with a (scaled) generator
• Repeat



Fractals
• Add randomness to the new vertex locations

• E.g., can create an irregular 2D silhouette (for far away mountains)



Height Fields
• Start with a 2D fractal (or any 2D grey-scale image)
• Place the image on top of a ground plane (subdivided into triangles)
• For each triangle vertex, displace its height based on the local pixel intensity



3D Landscapes
• Initiator: start with a shape
• Generator: replace random subparts with a self-similar (somewhat random) pattern

• Similar to subdivision, but with much more interesting rules for setting vertex positions 



3D Landscapes



Fractal Worlds



Machine Learning
• Interactive Example-Based Terrain Authoring with Generative Adversarial Networks

• Siggraph 2017



Generative AI

Nvidia


