More Geometric Modeling




Implicit Surfaces

* Define a function ¢ (x) over Vx € R?
* Interior Q™ is defined by ¢(x) < 0, and exterior Q% defined by ¢(x) > 0
* The surface dQ is defined by ¢p(x) = 0

* We have already seen planes/spheres (and lines/rays/circles in 2D) defined by implicit surfaces
* Easy to ray trace implicitly defined geometry

* Easy to check whether a point x is inside/outside: just evaluate ¢ (x)
* Constructive Solid Geometry (CSG) operations: union, difference, intersection, etc.
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Topological Change

 Greatly superior to triangle meshes for topological change!




Blobbies

* Each blob is defined as a density function around a particle
* Blob kernels can be: 2D ellipses, 2D diamonds, 3D spheres, etc.
* For each pixel, the aggregate density is summed from all overlapping blobs

* Also known as:
* Metaballs (in Japan), Soft objects (in Canada and New Zealand)
* Slightly different density kernel functions
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Blobby Modeling
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Marching Cubes (or Marching Tetrahedra)

e Turns an implicit surface into triangles

e Define the implicit surface on a 3D grid
e For each grid cell, use the topology of the volume to construct surface triangles
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Netwon’s Second Law (for Physics Simulations)

* Kinematics describe position X (t) and velocity V (t) as function of time t

cEE =y orx' (1) =V(©®)

* Dynamics describe responses to external stimuli

* Newton’s second law F(t) = MA(t) is a dynamics equation

« V'(t) = A(t) implies V'(t) = 15/1)

d?Xx () 7 F(t)
as well as ez =X (19 =12—=

X'(t V(t)
* Combining kinematics and dynamics gives: (V'(t)) = (F(t,X(t),V(t))>
M

* Note: forces often depend on position/velocity

Much of the physical world can be simulated with computational mechanics (FEM) and
computational fluid dynamics (CFD), using Newton’s second law

* Create degrees of freedom, specify forces, and solve the resulting ordinary differential equations (ODEs)
e Spatially interdependent forces lead to partial differential equations (PDEs)
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Computational Mechanics
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Computational Biomechanics




Computer Vision



Range Scanners

e Senses 3D positions on an object’s surface, and returns a range image:
e mXn grid of distances (m points per laser sheet, n laser sheets)
e Multiple range images are aligned with transformations
e Transformations determined via Iterative Closest Point (ICP) and related/similar methods

e Aligned range images are combined using a zippering algorithm
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Range Scanners

* Each sample point in the mXn range image is a potential vertex in a triangle mesh
 Special care is required to avoid joining together vertices separated by depth discontinuities
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Figure 3: Building triangle mesh from range points.




Scanning w/Mobile Devices

g AUTODESK" 123D

Structure Sensor for iPad Autodesk 123D Catch



Voxel Carving

* Requires multiple images (from calibrated cameras) taken from different directions

* Construct a voxelized 3D model:
* For each image, delete (carve away) voxels outside the object silhouette

* Colors can be projected onto the geometry
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Voxel Carving

Original image Extracted silhouettes
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Reconstruction from Large Photo Collections

* Collect a large number of photos (e.g. from google images)

* Predict relative camera position/orientation for each image

* The position of a point that is visible in multiple images can be triangulated
» Obtain a sparse point cloud representation of the object

* Dense reconstruction algorithms can be used to improve the results

2D photos 3D geometry



Drones & Trees

Tree Reconstruction Visualizer
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Noise & De-Noising

* Computer Vision algorithms use real-world sensors/data
* This results in noise corruption, which is the biggest drawback to such methods
* Denoising/smoothing algorithms are very important (for alleviating these issues)




Laplacian Smoothing

 Compute a Laplacian estimate using the one ring of vertices about a point
 Similar to differential coordinates

1
*E.g, onacurve: L(p;) = (i1 — pi) + (i1 — 1))
* Then, update p;**"” = p; + AL(p;) where 1 € (0,1)

* Repeat several iterations




Taubin Smoothing

* Laplacian smoothing suffers from volume loss
* Taubin smoothing periodically performs an inflation step to add back volume:

pi® =p; —uL(p;)) with u>0
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Procedural Methods (for Geometry Construction)

* Generate geometry with an algorithm Neural Networks?

* Typically used for complex or tedious-to-create models Generative Al?
* Perturb the algorithm to make variations of the geometry

e Start with a small set of data
 Use rules to describe high level properties of the desired geometry
 Add randomness, and use recursion




L-Systems

* Developed by a biologist (Lindenmayer) to study algae growth

* A recursive formal grammar:
* An alphabet of symbols (terminal and non-terminal)

Natural Language
Processing (NLP)?

* Production rules: non-terminal symbols recursively create new symbols (or sequences of symbols)

e Start with an initial string (axiom), and apply production rules
* A translator turns symbols into geometric structures

Nonterminals: A and B both mean “draw forward”
Terminals: +/- mean "turn” right/left (respectively) by 60 degrees
Production Rules: A>B+A+BandB—>A-B-A
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L-System + Stack = Branches

* Nonterminals: X is no action, F is draw forward

* Terminals: +/- means turn right/left by 25 degrees
* [ means to store current state on the stack
* ] means to load the state from the stack
* |nitial Axiom: X
* Production Rules: X - F = [[X]+X] + F [+FX] = X, F =& FF




L-Systems

* Easily extended to 3D
* Model trunk/branches as cylinders

* As recursion proceeds:
* shrink cylinder size
 vary color (from brown to green)

* Add more variety with a stochastic L-system
* Multiple (randomly-chosen) rules for each symbol

* Practice and experimentation is required in

order to obtain good results
e (just like for ML)




Fractals

* Initiator: start with a shape
e Generator: replace subparts with a (scaled) generator
* Repeat




Fractals

 Add randomness to the new vertex locations

* E.g., can create an irregular 2D silhouette (for far away mountains)

Step 1

Step 2

Step 3




Height Fields

e Start with a 2D fractal (or any 2D grey-scale image)
* Place the image on top of a ground plane (subdivided into triangles)
* For each triangle vertex, displace its height based on the local pixel intensity




3D Landscapes

* Initiator: start with a shape
* Generator: replace random subparts with a self-similar (somewhat random) pattern

* Similar to subdivision, but with much more interesting rules for setting vertex positions



3D Landscapes




Fractal Worlds




Machine Learning

* Interactive Example-Based Terrain Authoring with Generative Adversarial Networks
e Siggraph 2017




Generative Al

Rapidly Generate 3D Assets for Virtual
Worlds with Generative Al
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