Triangles
Lots of Triangles

Stanford Bunny
69,451 triangles

David (Digital Michelangelo Project)
56,230,343 triangles
Why Triangles?

- Can focus on specializing/optimizing the geometry pipeline for only one geometric primitive
- Software and algorithms can be optimized for one geometric primitive
- Hardware (e.g. GPUs) can be specialized to treat one geometric primitive

- Triangles have many inherent benefits:
 - Even complex objects can be well approximated (piecewise linear convergence) with enough triangles
 - Easy to break other polygons into triangles
 - Triangles are guaranteed to be planar (unlike quadrilaterals)
 - Transformations (from last lecture) only need be applied to the triangle vertices
 - Barycentric interpolation can be used to robustly interpolate information from the triangle’s vertices to the triangle’s interior
 - Etc.
OpenGL

- Blender uses OpenGL for its real-time scanline renderer
- OpenGL was started by SGI in 1991 (went into the public domain in 2006)
- It’s a drawing API for 2D/3D graphics
- Designed to be implemented mostly on hardware
- Many books and other documentation
- Main competitor is DirectX

- OpenGL is highly optimized for triangles:
GPUs and Gaming Consoles

- GPUs and Consoles are highly optimized for the graphics geometry pipeline
- They now support ray tracing, as does Blender
Rasterization

- Use screen space projection to transform triangle vertices to screen space
- Find all the pixels inside the projected 2D triangle
- Color the pixels inside the triangle with the RGB-color of the triangle
Aside: Bounding Box Acceleration

• Checking every pixel against every triangle is computationally expensive
• Calculate a bounding box around the triangle, with diagonal corners:
 \[(\min(x_0, x_1, x_2), \min(y_0, y_1, y_2)) \text{ and } (\max(x_0, x_1, x_2), \max(y_0, y_1, y_2))\]
• Then, round coordinates upward to the nearest integer to find all relative pixels
Implicit Equation for a 2D line

- Compute a directed edge vector $e = p_1 - p_0 = (x_1 - x_0, y_1 - y_0)$
- Compute the 2D normal $n = (y_1 - y_0, -(x_1 - x_0))$, which doesn’t need be unit length
- This 2D normal is *rightward* with respect to the 2D ray direction (leftward normal is $-n$)
- Points p lying exactly on the 2D line have: $(p - p_0) \cdot n = 0$
- This is the same equation used for planes in 3D
(Leftward) “Interior” Side of a 2D Ray

- Points p on the “interior” side of the 2D ray have: $(p - p_0) \cdot n < 0$
- Points p exactly on the 2D line have: $(p - p_0) \cdot n = 0$
- Points p on the “exterior” side of the 2D ray have: $(p - p_0) \cdot n > 0$
- This same concept can be used for planes in 3D
A 2D point is inside a 2D triangle, if it is interior to (to the left of) all 3 rays.

- **Vertex order matters**: backward facing triangles are not rendered, since no points are to the left of all three rays.
Boundary Cases

- Pixels lying exactly on a triangle boundary with \((p - p_0) \cdot n = 0\) for one of the edges won’t be rendered
 - Can cause gaps between adjacent triangles sharing an edge, when that shared edge overlaps a pixel
- Changing the inside test to \((p - p_0) \cdot n \leq 0\) instead of \((p - p_0) \cdot n < 0\) rectifies the problem, but now both triangles attempt to color the same pixel
 - Inefficient, and can cause disagreements that lead to artifacts
- Instead, points on the shared edge should be consistently rendered with one triangle or the other
 - The edge normals point in opposite directions for the two adjacent triangles
 - When \(n_x > 0\) or \((n_x = 0 \text{ and } n_y > 0)\), rasterize pixels on that edge
 - When \(n_x < 0\) or \((n_x = 0 \text{ and } n_y < 0)\), do not rasterize pixels on that edge
 - Note: \(n_x\) and \(n_y\) are never both zero for non-degenerate 2D triangles
Overlapping Triangles

• If one object is in front of another, two triangles may both try to color the same pixel.

• Recall (last lecture), the perspective projection computes depth map values \(z' = n + f - \frac{fn}{z} \) that can be used for occlusion/transparency (via the alpha channel).

• Thus, color the pixel based on which triangle has a smaller \(z' \) value.

• This requires interpolating \(z' \) values from the vertices of the triangle to the pixel locations.

• In order to do this, we use *proper* screen space barycentric weight interpolation.
1D Linear Interpolation

- Given two points \((x_1, y_1)\) and \((x_2, y_2)\) in 1D, one can linearly interpolate between them via

 \[y(x) = \frac{y_2-y_1}{x_2-x_1} x - \frac{y_2-y_1}{x_2-x_1} x_1 + y_1, \]

 which rearranges to

 \[y(x) = \left(1 - \frac{x-x_1}{x_2-x_1}\right) y_1 + \frac{x-x_1}{x_2-x_1} y_2 \]

- Alternatively, one can write

 \[y(t) = (1 - t)y_1 + ty_2 \]

 where

 \[t = \frac{x-x_1}{x_2-x_1} \]

 ranges from 0 to 1 and can be seen as the fraction of the way from \(x_1\) to \(x_2\)
2D/3D Line Segments

- This concept can be extended to line segments in both 2D and 3D.
- Given endpoints p_0 and p_1, intermediate points are defined based on the fraction of the distance that point is from p_0 to p_1 via $p(t) = (1 - t)p_0 + tp_1$.
- Here, t is calculated via $t = \frac{\|p - p_0\|_2}{\|p_1 - p_0\|_2}$ since p_0 and p_1 are multidimensional points.
- Barycentric weights reformulate this using weights $\alpha_0, \alpha_1 \in [0,1]$ where $\alpha_0 + \alpha_1 = 1$ and $p = \alpha_0 p_0 + \alpha_1 p_1$, i.e. $\alpha_0 = \frac{\|p - p_1\|_2}{\|p_1 - p_0\|_2}$ and $\alpha_1 = \frac{\|p - p_0\|_2}{\|p_1 - p_0\|_2}$.
- Barycentric weights express any point p on the segment as a linear combination of the endpoints of the segment.
2D/3D Triangles

• To extend to triangles with 3 vertices, computes 3 barycentric weights $\alpha_0, \alpha_1, \alpha_2 \in [0,1]$ with $\alpha_0 + \alpha_1 + \alpha_2 = 1$ and $p = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$

• The weights are computed via areas, i.e.

$$\alpha_0 = \frac{\text{Area}(p,p_1,p_2)}{\text{Area}(p_0,p_1,p_2)} \quad \text{and} \quad \alpha_1 = \frac{\text{Area}(p_0,p,p_2)}{\text{Area}(p_0,p_1,p_2)} \quad \text{and} \quad \alpha_2 = \frac{\text{Area}(p_0,p_1,p)}{\text{Area}(p_0,p_1,p_2)}$$

• Note the triangle area formula: $\text{Area}(p_0, p_1, p_2) = \frac{1}{2} \| \overrightarrow{p_0p_1} \times \overrightarrow{p_0p_2} \|_2$
(Alternative) Algebraic Approach

- Rewrite $\alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2 = p$ as $\alpha_0 \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \alpha_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + (1 - \alpha_0 - \alpha_1) \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- Assemble into matrix form:
 $$\begin{pmatrix} x_0 - x_2 & x_1 - x_2 \\ y_0 - y_2 & y_1 - y_2 \\ z_0 - z_2 & z_1 - z_2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} x - x_2 \\ y - y_2 \\ z - z_2 \end{pmatrix}$$

- In 2D, this is a 2x2 coefficient matrix, but in 3D one has to use the normal equations to reduce to a 2x2 system, i.e. convert $A \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = b$ to $A^T A \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = A^T b$

- The coefficient matrix is rank 1 when the two vectors are colinear, implying infinite solutions for triangles with zero area (one can still embed p on an edge)

- Otherwise, invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns
Triangle Basis Vectors

- Compute edge vectors \(u = p_1 - p_0 \) and \(v = p_2 - p_0 \)
- Then, any point \(p \) interior to the triangle can be written as \(p = p_0 + \beta_1 u + \beta_2 v \) where \(\beta_1, \beta_2 \in [0,1] \) and \(\beta_1 + \beta_2 \leq 1 \)
- Substitutions and collecting terms gives \(p = (1 - \beta_1 - \beta_2)p_0 + \beta_1 p_1 + \beta_2 p_2 \) implying the equivalence: \(\alpha_0 = 1 - \beta_1 - \beta_2 \), \(\alpha_1 = \beta_1 \), \(\alpha_2 = \beta_2 \)
Perspective Projection

• A triangle in world space with vertices p_0, p_1, p_2 is projected into screen space, vertex by vertex, to obtain p'_0, p'_1, p'_2 where $x' = \frac{hx}{z}$ and $y' = \frac{hy}{z}$ for all x and y

• A point on the triangle in world space $p = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$ is projected into screen space to a point p'

• Notably, $p' \neq \alpha_0 p'_0 + \alpha_1 p'_1 + \alpha_2 p'_2$ because the perspective projection is highly nonlinear

• The barycentric weights that describe the interior of the triangle in world space do not still hold after projecting the vertices into screen space

• Thus, it is unclear how to compute z' at a pixel from the z' values at the vertices of the screen space triangle

• The z' values are not linear with respect to the triangle vertices in screen space, only in world space

• If we knew the location of the pixel on the world space triangle, we could use barycentric interpolation on the world space triangle to compute z' for the pixel
Screen Space Barycentric Weights

- Given a pixel at \(p' \), compute screen space barycentric weights so that \(p' = \alpha'_0 p'_0 + \alpha'_1 p'_1 + (1 - \alpha'_0 - \alpha'_1)p'_2 \)
- Define 2D triangle basis vectors (about \(p'_2 \)) as \(u' = p'_0 - p'_2 \) and \(v' = p'_1 - p'_2 \)
- Then \(p' = \alpha'_0 u' + \alpha'_1 v' + p'_2 = \left(\frac{u'_1}{u'_2} \right) \left(\frac{v'_1}{v'_2} \right) \left(\alpha'_0 \right) + \left(\frac{x'_2}{y'_2} \right) \)
- The unknown point \(p = \alpha_0 p_0 + \alpha_1 p_1 + (1 - \alpha_0 - \alpha_1)p_2 = \alpha_0(p_0 - p_2) + \alpha_1(p_1 - p_2) + p_2 \) that projects to \(p' \) has unknown barycentric weights that need to be determined (once \(\alpha_0 \) and \(\alpha_1 \) are known, \(p \) is then known)
- The coordinates of \(p \) obey \(x = \alpha_0 (x_0 - x_2) + \alpha_1 (x_1 - x_2) + x_2 \), \(y = \alpha_0 (y_0 - y_2) + \alpha_1 (y_1 - y_2) + y_2 \), and \(z = \alpha_0 (z_0 - z_2) + \alpha_1 (z_1 - z_2) + z_2 \)

\[
\begin{pmatrix}
\frac{hx}{z} \\
\frac{hy}{z}
\end{pmatrix} = \left(\begin{array}{c}
\frac{\alpha_0(x_0-x_2)+\alpha_1(x_1-x_2)+x_2}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} \\
\frac{\alpha_0(y_0-y_2)+\alpha_1(y_1-y_2)+y_2}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2}
\end{array} \right) = \left(\begin{array}{c}
\frac{\alpha_0(z_0x_0'-z_2x'_2)+\alpha_1(z_1x'_1'-z_2x'_2)+z_2x'_2}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} \\
\frac{\alpha_0(z_0y_0'-z_2y'_2)+\alpha_1(z_1y'_1'-z_2y'_2)+z_2y'_2}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2}
\end{array} \right)
\]

- Or \(p' = \frac{1}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} \left[\begin{pmatrix}
z_0x'_0 - z_2x'_2 \\
z_0y'_0 - z_2y'_2
\end{pmatrix} \right] \left(\begin{array}{c}
\alpha_0 \\
\alpha_1
\end{array} \right) + \left(\begin{array}{c}
z_2x'_2 \\
z_2y'_2
\end{array} \right) \)
Screen Space Barycentric Weights

- These two definitions of p' can be equated to obtain:
 \[
 \frac{1}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \left[\left(z_0 x'_1 - z_2 x'_2 \right) \left(z_0 y'_1 - z_2 y'_2 \right) \right] \left(\alpha_0 \right) + \left(z_2 x'_2 \right) \left(\alpha_1 \right) = \left(u'_1 \right) + \left(v'_1 \right) \left(\alpha'_0 \right) + \left(x'_2 \right) \left(y'_2 \right)
 \]
 - Bringing $\left(x'_2 \right) \left(y'_2 \right)$ to the left hand side, and under the brackets as $-\left(\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2 \right)$ leads to:
 \[
 \frac{\left(z_2 x'_2 - z_0 x'_2 \right) \left(z_2 y'_2 - z_0 y'_2 \right)}{\alpha_0(z_0 - z_2) + \alpha_1(z_1 - z_2) + z_2} \left(z_0 x'_1 - z_1 x'_2 \right) \left(\alpha_0 \right) = \left(u'_1 \right) + \left(v'_1 \right) \left(\alpha'_0 \right)
 \]
 - Importantly, all the terms related to x and y coordinates vanished, leaving dependence only on the z coordinates.
Screen Space Barycentric Weights

• Starting from

\[
\frac{1}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} (z_0\alpha_0) = \left(\frac{\alpha_0'}{\alpha_1'}\right) or \left(\frac{z_0\alpha_0}{z_1\alpha_1}\right) = (\alpha_0(z_0-z_2) + \alpha_1(z_1 - z_2) + z_2) \left(\frac{\alpha_0'}{\alpha_1'}\right)
\]

• Rewrite to

\[
\left(\frac{z_0 + (z_2 - z_0)\alpha_0'}{(z_2 - z_0)\alpha_1'}\right) \left(\frac{z_2 - z_1)\alpha_0'}{z_1 + (z_2 - z_1)\alpha_1'}\right) = z_2 \left(\frac{\alpha_0'}{\alpha_1'}\right)
\]

• The determinant of this 2x2 matrix is

\[
z_0z_1 + z_1(z_2 - z_0)\alpha_0' + z_0(z_2 - z_1)\alpha_1'
\]

• Thus the inverse is

\[
\frac{1}{z_0z_1 + z_1(z_2 - z_0)\alpha_0' + z_0(z_2 - z_1)\alpha_1'} \left(\frac{z_1 + (z_2 - z_1)\alpha_1'}{(z_0 - z_2)\alpha_1'}\right) = \left(\frac{z_2}{z_0}\right) \left(\frac{z_0\alpha_0'}{z_0\alpha_1'}\right)
\]

• Note that

\[
\left(\frac{z_1 + (z_2 - z_1)\alpha_1'}{(z_0 - z_2)\alpha_1'}\right) = \left(\frac{z_0\alpha_0'}{z_0\alpha_1'}\right)
\]

• Thus,

\[
\left(\frac{\alpha_0}{\alpha_1}\right) = \frac{z_2}{z_0z_1 + z_1(z_2 - z_0)\alpha_0' + z_0(z_2 - z_1)\alpha_1'} \left(\frac{z_1\alpha_0'}{z_0\alpha_1'}\right)
\]

• So, given barycentric coordinates of the pixel, \(\alpha_0'\) and \(\alpha_1'\), we can compute:

\[
\alpha_0 = \frac{z_1z_2\alpha_0'}{z_0z_1 + z_1(z_2 - z_0)\alpha_0' + z_0(z_2 - z_1)\alpha_1'} \quad \text{and} \quad \alpha_1 = \frac{z_0z_2\alpha_1'}{z_0z_1 + z_1(z_2 - z_0)\alpha_0' + z_0(z_2 - z_1)\alpha_1'}
\]

• Then \(\alpha_0\) and \(\alpha_1\) can be used to find the corresponding point \(p\) on the world space triangle

• We use \(\alpha_0\) and \(\alpha_1\) to compute \(z'\) for the pixel, not \(\alpha_0'\) and \(\alpha_1'\)
Ray Tracing

- Ray Tracing works very differently than the Scanline Rendering just discussed.
- The ray tracer creates a ray going through the pixel in question, and subsequently intersects that ray with triangles in world space.
- Since the ray tracer intrinsically operates in world space, as opposed to screen space, it need not worry about dealing with screen space barycentric coordinates.
- Operating in world space is a huge advantage for the ray tracer when it comes to image quality, as it can thoroughly look around in world space to figure out what’s going on.

- A scanline renderer operates in screen space and as such has much more limited information.
- On the other hand, the limited capabilities of a scanline renderer make it a fantastic candidate for real time implementation on hardware.

- Only recently have hardware implementations of some aspects of ray tracing become more feasible!
Lighting and Shading

- After identifying that a pixel is inside a triangle, as discussed above, we set its color to the color of the triangle.
- This ignores all the nuances of how light works (and we’ll discuss that more next week).
- If you rendered a sphere based on this simplistic approach, it would look like this: